
Phased Array System Toolbox™

User’s Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Phased Array System Toolbox™ User’s Guide

© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only Revised for Version 1.0 (R2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Phased Arrays

1
Antenna and Microphone Elements 1-2
Isotropic Antenna Element . 1-2
Cosine Antenna Element . 1-5
Custom Antenna Element . 1-7
Omnidirectional Microphone . 1-9
Custom Microphone Element . 1-10

Array Geometries and Analysis . 1-13
Uniform Linear Array . 1-13
Uniform Rectangular Array . 1-19
Conformal Array . 1-21

Signal Radiation . 1-24

Signal Collection . 1-26

Waveforms, Transmitter, and Receiver

2
Rectangular Pulse Waveforms . 2-2

Linear Frequency Modulated Pulse Waveforms 2-6

Stepped FM Pulse Waveforms . 2-11

Phase-Coded Waveforms . 2-14
When to Use Phase-Coded Waveforms 2-14
How to Create Phase-Coded Waveforms 2-14
Basic Radar Using Phase-Coded Waveform 2-15

iii

Waveforms with Staggered PRFs . 2-19
When to Use Staggered PRFs . 2-19
Linear FM Waveform with Staggered PRF 2-19

Transmitter . 2-21
Transmitter Object . 2-21
Phase Noise . 2-23

Receiver Preamp . 2-25

Radar Equation . 2-30

Beamforming

3
Conventional Beamforming . 3-2

Adaptive Beamforming . 3-9

Wideband Beamforming . 3-13

Direction-of-Arrival (DOA) Estimation

4
Beamscan DOA Estimation . 4-2

Super-resolution DOA Estimation 4-4

iv Contents

Space-Time Adaptive Processing (STAP)

5
Angle-Doppler Response . 5-2
Benefits of Visualizing Angle-Doppler Response 5-2
Angle-Doppler Response of a Stationary Target at a
Stationary Array . 5-2

Angle-Doppler Response of a Stationary Target Return at a
Moving Array . 5-5

Displaced Phase Center Antenna (DPCA) Pulse
Canceller . 5-9
When to Use the DPCA Pulse Canceller 5-9
Example: DPCA Pulse Canceller for Clutter Rejection . . . 5-9

Adaptive Displaced Phase Center Antenna (ADPCA)
Pulse Canceller . 5-14
When to Use the Adaptive DPCA Pulse Canceller 5-14
Example: Adaptive DPCA Pulse Canceller 5-14

Sample Matrix Inversion (SMI) Beamformer 5-21
When to Use the SMI Beamformer 5-21
Example: Sample Matrix Inversion (SMI) Beamformer . . . 5-21

Detection

6
Hypothesis Testing . 6-2
Neyman-Pearson Hypothesis Testing 6-2
Likelihood Ratio Tests . 6-3

Receiver Operating Characteristic (ROC) Curves 6-9

Matched Filtering . 6-14

Constant False-Alarm Rate (CFAR) Detectors 6-20
Reasons for Using CFAR Detectors 6-20

v

Cell-Averaging CFAR Detector . 6-21
Testing CFAR Detector Adaption to Noisy Input Data . . . 6-23

Environment and Target Models

7
Free Space Path Loss . 7-2

Radar Target . 7-6

Clutter Modeling . 7-10
Surface Clutter Overview . 7-10
Approaches for Clutter Simulation or Analysis 7-10
Considerations for Setting Up a Constant Gamma Clutter
Simulation . 7-11

Related Examples . 7-12

Barrage Jammer . 7-14

Coordinate Systems and Motion Modeling

8
Rectangular and Spherical Coordinates 8-2
Rectangular Coordinates . 8-2
Spherical Coordinates . 8-8

Global and Local Coordinate Systems 8-14
Global Coordinate System . 8-14
Local Coordinate System . 8-16
Converting Between Global and Local Coordinate
Systems . 8-19

Motion Modeling in Phased Array Systems 8-21

vi Contents

Doppler Shift and Pulse-Doppler Processing 8-26

vii

viii Contents

1

Phased Arrays

• “Antenna and Microphone Elements” on page 1-2

• “Array Geometries and Analysis” on page 1-13

• “Signal Radiation” on page 1-24

• “Signal Collection” on page 1-26

1 Phased Arrays

Antenna and Microphone Elements

In this section...

“Isotropic Antenna Element” on page 1-2

“Cosine Antenna Element” on page 1-5

“Custom Antenna Element” on page 1-7

“Omnidirectional Microphone” on page 1-9

“Custom Microphone Element” on page 1-10

Isotropic Antenna Element
An isotropic antenna element radiates equal power in all nonbaffled directions.
To construct an isotropic antenna, use phased.IsotropicAntennaElement.

The isotropic antenna element object has the following modifiable properties:

• FrequencyRange— The operating frequency range of the antenna.

• BackBaffled— A logical property indicating whether the response of the
antenna is baffled at azimuth angles outside the interval [–90,90].

Construct an isotropic antenna element with a uniform frequency response
over azimuth angles from [–180,180] degrees and elevation angles from
[–90,90] degrees. See “Rectangular and Spherical Coordinates” on page 8-2
for how the toolbox defines azimuth and elevation angles. The antenna
operates between 300 megahertz (MHz) and 1 gigahertz (GHz). Plot the
antenna response at 1 GHz.

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[3e8 1e9],'BackBaffled',false)

plotResponse(ha,1e9,'RespCut','3D','Format','Polar',...
'Unit','pow');

1-2

Antenna and Microphone Elements

plotResponse is a method of phased.IsotropicAntennaElement. By default,
plotResponse plots the response of the antenna element in decibels (dB) at
zero degrees elevation.

plotResponse(ha,1e9);

Setting the BackBaffled property to true limits the response to azimuth
angles in the interval [–90,90].

1-3

1 Phased Arrays

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[3e8 1e9],'BackBaffled',true);

plotResponse(ha,1e9,'RespCut','3D','Format','Polar',...
'Unit','pow');

You can find your isotropic antenna element’s voltage response at specific
frequencies and angles using the antenna element’s step method.

Design Backbaffled Isotropic Antenna Element and Obtain Element
Response

Construct an isotropic antenna element to operate in the IEEE® X band
between 8 and 12 GHz. Backbaffle the response of the antenna. Obtain your
antenna element’s response at 4 GHz intervals between 6 and 14 GHZ and at
azimuth angles between [–100,100] in 50 degree increments.

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[8e9 12e9],'BackBaffled',true)

respfreqs = 6e9:4e9:14e9;
respazangles = -100:50:100;
anresp = step(ha,respfreqs,respazangles)

The antenna response in anresp is a matrix whose row dimension equals the
number of azimuth angles in respazangles and whose column dimension
equals the number of frequencies in respfreqs.

1-4

Antenna and Microphone Elements

The response voltage in the first two and last two columns of anresp is
zero because those columns contain the antenna response at 6 and 14 GHz
respectively. These frequencies are not included in the antenna’s operating
frequency range.

Similarly, the first and last rows of anresp contain all zeros because the
BackBaffled property is set to true. The first and last row contain the
antenna’s response at azimuth angles outside of [–90,90].

To obtain the antenna response at nonzero elevation angles, input the angles
to step as a 2-by-M matrix where each column is an angle in the form
[azimuth;elevation].

release(ha)
respelangles = -90:45:90;
respangles = [respazangles; respelangles];
anresp = step(ha,respfreqs,respangles)

Note that anresp(1,2) and anresp(5,2) represent the antenna voltage
response at the aziumth-elevation pairs (-100,-90) and (100,90). Because the
elevation angles are equal to +/– 90 degrees, these responses are equal to one
even though the BackBaffled property is set to true. Thus, the resulting
elevation cut degenerates into a point.

Cosine Antenna Element
The phased.CosineAntennaElement object models an antenna element with
a cosine response raised to a specified power in azimuth and elevation. The
power response pattern of the cosine antenna is:

P m nm n(,) cos ()cos () ,     1

where θ and ϕ are the azimuth and elevation angles respectively. The cosine
response pattern achieves a maximum value of 1 at 0 degrees azimuth and
elevation. The response pattern has zeros at -90 and 90 degrees in azimuth
and elevation. The cosine antenna element response is identically zero
for azimuth and elevation angles outside of [–90,90] degrees. Raising the
response pattern to powers greater than one concentrates the response in
aziumth or elevation.

1-5

1 Phased Arrays

To illustrate this effect, the following example returns the cosine response
with powers equal to 1 and 2 for a single angle between -90 and 90 degrees.

theta = -90:.01:90;
Cos1 = cosd(theta);
Cos2 = Cos1.^2;
plot(theta,Cos1); hold on;
plot(theta,Cos2,'r');
legend('Exponent = 1','Exponent = 2','location','northeast');
xlabel('Degrees'); ylabel('Response');

The custom antenna element object has the following modifiable properties:

• FrequencyRange— The operating frequency range of the antenna

• CosinePower — Exponent of cosine pattern

Cosine Antenna Element Operating from 1 to 10 GHz

Construct an antenna with a cosine squared response in both azimuth and
elevation and plot the antenna response. The operating frequency range
of the antenna is from 1 to 10 GHz.

hcos = phased.CosineAntennaElement(...
'FrequencyRange',[1e9 1e10],'CosinePower',[2 2])

1-6

Antenna and Microphone Elements

plotResponse(hcos,5e9,'RespCut','3D','Format','Polar');

Custom Antenna Element
The phased.CustomAntennaElement object enables you to model a custom
antenna element.

The modifiable properties of the custom antenna element object are:

• AzimuthAngles— Azimuth angles where the custom response is evaluated.
The azimuth angles must lie between [–180,180] degrees, and you must
specify at least three azimuth angles.

• ElevationAngles — Elevation angles where the custom response is
evaluated. The elevation angles must lie between [–90,90] degrees, and you
must specify at least three elevation angles.

• FrequencyVector— Operating frequency vector for the antenna element

• FrequencyResponse — Frequency response of the element in dB at the
frequencies in FrequencyVector.

• RadiationPattern— The magnitude radiation pattern in dB. This pattern
shows the spatial response of the antenna. RadiationPattern is a Q-by-P
matrix, where Q is the number of elements in the ElevationAngles
property and P is the number of elements in the AzimuthAngles property.

1-7

1 Phased Arrays

For your custom antenna element, the antenna response (the output of step)
depends on the values of the FrequencyResponse and RadiationPattern
properties.

Specifically, the frequency and spatial responses are interpolated separately
using nearest neighbor interpolation and then multiplied together to produce
the total response. To avoid interpolation errors, the range of azimuth angles
should include +/– 180 degrees and the range of elevation angles should
include +/– 90 degrees.

To illustrate this process, construct a simple custom antenna element object.
The radiation pattern is constant over each azimuth angle and has a cosine
pattern for the elevation angles.

Az = -180:90:180;

El = -90:45:90;

Elresp = cosd(El);

ha = phased.CustomAntennaElement('AzimuthAngles',Az,...

'ElevationAngles',El,...

'RadiationPattern',repmat(Elresp',1,numel(Az)));

ha.RadiationPattern

Use the step method to calculate the antenna response at the
azimuth-elevation pairs [-30 0; -45 0]; for a frequency of 500 MHz.

ANG = [-30 0; -45 0];
resp = step(ha,5e8,ANG)

The following illustrates the nearest-neighbor interpolation method used to
find the antenna voltage response.

G = interp2(degtorad(ha.AzimuthAngles),...
degtorad(ha.ElevationAngles),...
db2mag(ha.RadiationPattern),...
degtorad(ANG(1,:))', degtorad(ANG(2,:))','nearest',0);

H = interp1(ha.FrequencyVector,...
db2mag(ha.FrequencyResponse),5e8,'nearest',0);

antresp = H.*G

Compare the value of antresp to the output of the step method.

1-8

Antenna and Microphone Elements

Omnidirectional Microphone
An omnidirectional microphone has a response which is equal to one in all
nonbaffled directions. The phased.OmnidirectionalMicrophoneElement
object has the following modifiable properties:

• FrequencyRange— The operating frequency range of the microphone.

• BackBaffled— A logical property indicating whether the response of the
microphone is baffled at azimuth angles outside the interval [–90,90].

Backbaffled Omnidirectional Microphone with Frequency Response
from 20 Hz to 20 kHz

Construct an omnidirectional microphone element using the human audible
frequency range of 20 to 20,000 Hz. Baffle the microphone response for
azimuth angles outside of +/– 90 degrees. Plot the microphone’s power
response at 1000 Hz in polar form.

hmic = phased.OmnidirectionalMicrophoneElement(...
'BackBaffled',true,'FrequencyRange',[20 20e3]);

plotResponse(hmic,1e3,'RespCut','3D','Format','Polar',...
'Unit','pow');

In many applications, you sometimes need to examine the microphone’s
directionality, or polar pattern. To do so, set the RespCut argument of

1-9

1 Phased Arrays

plotResponse to one of the 2-D options and set the Format argument to
'Polar'. The 2-D options for the cut of the response are 'Az' (default), and
'El'.

% Using the default azimuth cut
plotResponse(hmic,1e3,'Format','Polar');

Use step to obtain the microphone’s magnitude response at the specified
azimuth angles and frequencies. The elevation angles are 0 degrees. Note the
response is one at all azimuth angles and frequencies as expected.

freq = 100:250:1e3;
ang = -90:30:90;
micresp = step(hmic,freq,ang)

Custom Microphone Element
You can model a microphone with your custom response using
phased.CustomMicrophoneElement. The phased.CustomMicrophoneElement
object has the following modifiable properties:

• FrequencyVector— The frequencies where you specify your response.

• FrequencyResponse— The frequency response in decibels corresponding
to the frequencies specified in the FrequencyVector.

1-10

Antenna and Microphone Elements

• PolarPatternFrequencies— The frequencies at which the microphone’s
polar pattern is measured. The polar pattern frequencies must lie within
the frequency range specified in FrequencyVector.

• PolarPatternAngles — The angles at which the microphone’s polar
pattern are measured.

• PolarPattern — An M-by-N matrix containing the microphone’s
magnitude response in decibels. The row dimension, M, is the number of
frequencies in PolarPatternFrequencies. The column dimension, N, is
the number of angles in PolarPatternAngles.

Microphone with Cardioid Response Pattern

Construct a microphone element with a cardioid response pattern. Use the
default FrequencyVector of [20 20e3]. Specify the polar pattern frequencies
as [500 1000].

Plot the microphone’s polar pattern.

hmic = phased.CustomMicrophoneElement(...

'PolarPatternFrequencies',[500 1000])

hmic.PolarPattern= mag2db([...

0.5+0.5*cosd(hmic.PolarPatternAngles);...

0.6+0.4*cosd(hmic.PolarPatternAngles)]);

plotResponse(hmic,1e3,'Format','Polar');

1-11

1 Phased Arrays

Calculate the microphone’s response at 30 deg and 60 deg azimuth with
corresponding elevation angles of 0 deg.

micresp = step(hmic,1e3,[30 60])

1-12

Array Geometries and Analysis

Array Geometries and Analysis

In this section...

“Uniform Linear Array” on page 1-13

“Uniform Rectangular Array” on page 1-19

“Conformal Array” on page 1-21

Uniform Linear Array
The uniform linear array (ULA) arranges sensor elements along a line in
space with uniform spacing. You can design a ULA with phased.ULA. The
phased.ULA object has the following modifiable properties:

• Element — The sensor elements of the array

• ElementSpacing—The spacing between array elements in meters

• NumElements — The number of elements in the ULA

Create a ULA with two isotropic antenna elements separated by 0.5 meters:

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);

You can return the coordinates of the array sensor elements in the form
[x;y;z] by using the getElementPosition method. See “Rectangular and
Spherical Coordinates” on page 8-2 for toolbox conventions.

sensorpos = getElementPosition(hula);

sensorpos is a 3-by-2 matrix with each column representing the position of a
sensor element. Note that the y-axis is the array axis. The positive x-axis is
the array look direction (0 degrees broadside). The elements are symmetric
with the respect to the phase center of the array.

The default element for a ULA is the phased.IsotropicAntennaElement
object. You can specify an alternative element with the Element property.
For more information on constructing antenna and microphone objects, see
“Antenna and Microphone Elements” on page 1-2.

1-13

1 Phased Arrays

Four-Element ULA with Cardioid Microphone Elements

Construct a four-element ULA with custom cardioid microphone elements.

% Specify the microphone element
hmic = phased.CustomMicrophoneElement;
hmic.PolarPatternFrequencies = [500 1000];
hmic.PolarPattern = mag2db([...

0.5+0.5*cosd(hmic.PolarPatternAngles);...
0.6+0.4*cosd(hmic.PolarPatternAngles)]);

% Assign the custom microphone element as the Element property
ha = phased.ULA('NumElements',4,'ElementSpacing',0.5,...

'Element',hmic);

To view the response of an array, you can use the plotResponse method.

plotResponse(ha,1e3,340,'Format','Polar')

By default, plotResponse shows the array’s normalized power response in
decibels (dB) at zero degrees elevation for azimuth angles from [–180,180].
You can view azimuth cuts of the array response from various elevation angles
and elevation cuts from various azimuth angles by specifying name-value
pairs in plotResponse.

1-14

Array Geometries and Analysis

To obtain the responses of your array elements, you can use the array’s step
method.

% Construct antenna for the array elements
hant = phased.IsotropicAntennaElement(...

'FrequencyRange',[3e8 1e9]);
hula = phased.ULA('NumElements',2,'ElementSpacing',0.5,...

'Element',hant);
% Obtain element responses at 1 GHz
freq = 1e9;
% for azimuth angles from -180:180
azangles = -180:180;
% elementresponses
elementresponses = step(hula,1e9,azangles);

elementresponses is a 2-by-361 matrix where each column contains the
element responses for the 361 azimuth angles. Because the elements of the
ULA are isotropic antennas, elementresponses is a matrix of ones.

You can use the phased.ElementDelay and phased.SteeringVector objects
to obtain important information about your array.

To determine the signal delay in seconds between array elements, use
phased.ElementDelay. The incident waveform is assumed to satisfy the
far-field assumption.

The following example computes the delay between elements of a 4-element
ULA for a signal incident on the array from –90 degrees azimuth and zero
degrees elevation. The delays are computed with respect to the phase center
of the array. By default, phased.ElementDelay assumes that the incident
waveform is an electromagnetic wave propagating at the speed of light.

% Construct 4-element ULA using value-only syntax
hula = phased.ULA(4);
hdelay = phased.ElementDelay('SensorArray',hula);
tau = step(hdelay,[-90;0]);

tau is a 4-by-1 vector of delays with respect to the phase center of the array,
which is the origin of the local coordinate system [0;0;0]. See “Global and
Local Coordinate Systems” on page 8-14 for a description of global and local
coordinate systems. Negative delays indicate that the signal is incident on

1-15

1 Phased Arrays

an element before it reaches the phase center of the array. Because the
waveform arrives from an azimuth angle of –90 degrees, the signal impinges
on the first and second elements of the ULA before it reaches the phase center
resulting in negative delays.

If the signal is incident on the array at 0 degrees broadside from a far-field
source, the signal illuminates all elements of the array simultaneously
resulting in zero delay.

tau = step(hdelay,[0;0]);

If the incident signal is an acoustic pressure waveform propagating at the
speed of sound, you can calculate the element delays by specifying the
PropagationSpeed property.

hdelay = phased.ElementDelay('SensorArray',hula,...
'PropagationSpeed',340);

tau = step(hdelay,[90;0]);

In the preceding code, the propagation speed is set to 340 m/s, which is the
approximate speed of sound at sea level.

The steering vector represents the relative phase shifts for the incident
far-field waveform across the array elements. You can determine these phase
shifts with the phased.SteeringVector object.

For a single carrier frequency, the steering vector for a ULA consisting of N
elements is:

e

e

e

e

j f

j f

j f

j f N





































2

2

2

2

1

2

3

 

 

 

 

.

.

. 


1-16

Array Geometries and Analysis

where τn denotes the time delay relative to the array phase center at the
n-th array element.

Compute the steering vector for a 4-element ULA with an operating frequency
of 1 GHz. Assume that the waveform is incident on the array from 45 degrees
azimuth and 10 degrees elevation.

hula = phased.ULA(4);
hsv = phased.SteeringVector('SensorArray',hula);
sv = step(hsv,1e9,[45; 10]);

You can obtain the steering vector with the following equivalent code.

hdelay = phased.ElementDelay('SensorArray',hula);
tau = step(hdelay,[45;10]);
exp(-1j*2*pi*1e9*tau)

To obtain the array response, which is a weighted-combination of the steering
vector elements for each incident angle, use phased.ArrayResponse.

Construct a two-element ULA with elements spaced at 0.5 m. Obtain the
array’s magnitude response (absolute value of the complex-value array
response) for azimuth angles -180:180 and plot the normalized magnitude
response in decibels.

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);
azangles = -180:180;
har = phased.ArrayResponse('SensorArray',hula);
resp = abs(step(har,1e9,azangles));
plot(azangles,mag2db((resp/max(resp))));
grid on;
title('Azimuth Cut at Zero Degrees Elevation');
xlabel('Azimuth Angle (degrees)');

1-17

1 Phased Arrays

Compare the figure produced by the preceding code to the figure obtained
using the plotResponse method.

figure
plotResponse(hula,1e9,physconst('lightspeed'))

You can simulate the effects of phase shifts across your array using the
collectPlaneWave method.

1-18

Array Geometries and Analysis

The collectPlaneWave method modulates input signals by the element of
the steering vector corresponding to an array element. Stated differently,
collectPlaneWave accounts for phase shifts across elements in the array
based on the angle of arrival. However, collectPlaneWave does not account
for the response of individual elements in the array.

Simulate the reception of a 100-Hz sine wave modulated by a carrier
frequency of 1 GHZ at a 4-element ULA. Assume the angle of arrival of the
signal is [-90; 0].

hula = phased.ULA(4);
t = unigrid(0,0.001,0.01,'[)');
% signals must be column vectors
x = cos(2*pi*100*t)';
y = collectPlaneWave(hula,x,[-90;0],1e9,physconst('LightSpeed'));

The preceding code is equivalent to the following.

hsv = phased.SteeringVector('SensorArray',hula);
sv = step(hsv,1e9,[-90;0]);
y1 = x*sv.';

Uniform Rectangular Array
You can implement a uniform rectangular array (URA) with phased.URA.
Array elements are distributed in the yz-plane with the array look direction
along the positive x-axis. Characteristics of the URA that you can customize
when you use phased.URA include:

• The sensor elements of the array

• The number of rows and the spacing between them

• The number of columns and the spacing between them

• The geometry of the planar lattice, which can be rectangular or triangular

Six-Element URA Receiving Sine Wave Signals

This example shows how to create a URA, get information about its element
positions, response, and delays, and simulate its reception of two sine waves.

1-19

1 Phased Arrays

Create a six-element URA with two elements along the y-axis and three
elements along the z-axis. Use a rectangular lattice, with the default spacing
of 0.5 meters along both the row and column dimensions of the array. Return
the positions of the array elements.

hura = phased.URA([2 3]);
pos = getElementPosition(hura);

Note that the x-coordinate is zero for all elements in the array.

You can plot the array response using the plotResponse method.

% Plot the response in 3D
plotResponse(hura,1e9,physconst('LightSpeed'),'RespCut','3D')

Calculate the element delays for signals arriving from +/– 45 degrees azimuth
and 0 degrees elevation.

hed = phased.ElementDelay('SensorArray',hura);
ang = [45 -45];
tau = step(hed,ang);

The first column of tau contains the element delays for the signal incident
on the array from +45 degrees azimuth and the second column contains the
delays for the signal arriving from –45 degrees. The delays are equal in
magnitude but opposite in sign as expected.

1-20

Array Geometries and Analysis

The following code simulates the reception of two sine waves arriving from
far field sources. One of the signals is a 100-Hz sine wave arriving from 20
degrees azimuth and 10 degrees elevation. The other signal is a 300-Hz
sine wave arriving from –30 degrees azimuth and 5 degrees elevation. Both
signals have a one GHz carrier frequency.

t = linspace(0,1,1000);
x = cos(2*pi*100*t)';
y = cos(2*pi*300*t)';
angx = [20; 10];
angy = [-30;5];
recsig = collectPlaneWave(hura,[x y],[angx angy],1e9);

Each column of recsig represents the received signal at the corresponding
element of the URA, hura.

Conformal Array
The phased.ConformalArray object provides you with significant
flexibility in constructing your phased array. For example, you can use
phased.ConformalArray to design a planar array with a nonrectangular
geometry, such as a circular array. You can also use phased.ConformalArray
to design nonplanar arrays.

The phased.ConformalArray object has the following modifiable properties:

• Element — Element of the array

• ElementPosition — Element positions

• ElementNormal— Element normal directions. Specify the direction normal
to the array element in [azimuth; elevation] form.

The default conformal array is an array consisting of a single
phased.IsotropicAntennaElement sensor element located at the origin of
the local coordinate system. The direction normal to the sensor element is 0
degrees azimuth and 0 degrees elevation.

hcon = phased.ConformalArray

1-21

1 Phased Arrays

Construct a three-element conformal array with elements at [1;0;0], [0; 1;
0], and [0;-1;0]. Specify the element normal azimuth angles as 0, 45, and
135 degrees respectively. All normal elevation angles are 0 degrees.

ha = phased.ConformalArray;
ha.ElementPosition = [1 0 0; 0 1 -1; 0 0 0];
ha.ElementNormal = [0 45 135; 0 0 0]

Uniform Circular Array

Construct a uniform circular array consisting of 60 elements. Assume an
operating frequency of 400 MHz. Specify the arc length between the elements
to be 0.5λ where λ is the wavelength of the operating frequency. The element
normal directions are equal to [ang; 0] where ang is the azimuth angle
of the array element.

% Angle spacing in degrees

theta = 360/60;

% Angle spacing in radians

thetarad = degtorad(theta);

% Arc length 0.5*wavelength of operating frequency

arclength = 0.5*(physconst('LightSpeed')/4e8);

radius = arclength/thetarad;

% Number of elements

N = 60;

% Element angles in degrees

ang = (0:N-1)*theta;

% Azimuth angles must be between [-180,180]

ang(32:end)=ang(32:end)-360;

hcirc = phased.ConformalArray;

hcirc.ElementPosition = [radius*cosd(ang);...

radius*sind(ang);...

zeros(1,N)];

hcirc.ElementNormal = [ang; zeros(1,N)];

% Plot the response

plotResponse(hcirc,1e9,physconst('lightspeed'),'Format','Polar')

1-22

Array Geometries and Analysis

1-23

1 Phased Arrays

Signal Radiation
You can use the phased.Radiator and phased.Collector objects to model
narrowband signal radiation and collection with an array. The array can be
a single microphone or antenna element, or an array of sensor elements.
For information on modeling single antenna or microphone elements, see
“Antenna and Microphone Elements” on page 1-2.

To radiate a signal from a sensor array, use phased.Radiator. The modifiable
properties of phased.Radiator are:

• CombineRadiatedSignals— A logical property which determines whether
the output of all sensor elements is combined.

• OperatingFrequency— The operating frequency of the array in hertz.

• PropagationSpeed— Propagation speed of the wave in meters per second.

• Sensor— Handle of the sensor (single element) or sensor array.

• WeightsInputPort — A logical property indicating whether to apply
weights to signals radiated by different elements in the array. If you set this
property to true, input the actual weights when you call the step method.

Radiate Signal with Uniform Linear Array

Construct a radiator using a two-element ULA with elements spaced 0.5
meters apart (the default ULA). The operating frequency is 300 MHz, the
propagation speed is the speed of light, and the element outputs are combined
to simulate the far field radiation pattern.

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);
hrad = phased.Radiator('Sensor',hula,...

'OperatingFrequency',3e8,...
'PropagationSpeed',physconst('lightspeed'),...
'CombineRadiatedSignals',true)

% create signal to radiate
x = [1 -1 1 -1]';
% model far field radiation at an angle of [45;0]
y = step(hrad,x,[45;0]);

1-24

Signal Radiation

The far field signal results from multiplying the signal by the array pattern.
The array pattern is the product of the array element pattern and the array
factor. For a uniform linear array, the array factor is the superposition of
elements in the steering vector (see phased.SteeringVector).

The following code produces an identical far field signal by explicitly using
the array factor.

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);
hsv = phased.SteeringVector('SensorArray',hula,...

'IncludeElementResponse',true);
sv = step(hsv,3e8,[45;0]);
y1 = x*sum(sv);
% compare y1 to y

1-25

1 Phased Arrays

Signal Collection
To model the collection of a signal with a sensor element or sensor array,
you can use the phased.Collector or phased.WideBandCollector. Both
collector objects assume that incident signals have propagated to the location
of the array elements, but have not been received by the array. In other
words, the collector objects do not model the actual reception by the array.
See “Receiver Preamp” on page 2-25 for signal effects related to the gain and
internal noise of the array’s receiver.

In many array processing applications, the ratio of the signal’s bandwidth to
the carrier frequency is small. Expressed as a percentage, this ratio does not
exceed a few percent. Examples include radar applications where a pulse
waveform is modulated by a carrier frequency in the microwave range.
These are narrowband signals. For narrowband signals, you can express the
steering vector as a function of a single frequency, the carrier frequency. For
narrowband signals, the phased.Collector object is appropriate.

In other applications, the narrowband assumption is not justified. In many
acoustic and sonar applications, the wave impinging on the array is a pressure
wave that is unmodulated. It is not possible to express the steering vector
as a function of a single frequency. In these cases, the subband approach
implemented in phased.WidebandCollector is appropriate.

The modifiable properties of the narrowband collector, phased.Collector,
object are:

• OperatingFrequency— The operating frequency of the array in hertz.

• PropagationSpeed— Propagation speed of the wave in meters per second.

• Sensor— Handle of the sensor (single element) or sensor array.

• Wavefront — Specifies the type of incoming wave as 'Plane' or
'Unspecified'. When you set the Wavefrontproperty to 'Plane', the
input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you set the
Wavefront property to 'Unspecified', the input signal are individual
waves impinging on individual sensors.

• WeightsInputPort — A logical property indicating whether to apply
weights to signals collected by different elements in the array. If you set

1-26

Signal Collection

this property to true, input the actual weights when you call the step
method.

Narrowband Collector for Uniform Linear Array

Construct a narrowband collector that models a plane wave impinging on
a two-element uniform linear array with an element spacing of 0.5 meters
(default ULA). The operating frequency of the array is 300 MHz.

hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);
hcol = phased.Collector('Sensor',hula,...

'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',3e8,'Wavefront','Plane')

% create signal to create
x =[1 -1 1 -1]';
% simulate reception from an angle of [45;0]
y = step(hcol,x,[45;0]);

In the preceding case, the collector object multiplies the input signal, x, by the
corresponding element of the steering vector for the two-element ULA. The
following code produces the response in an equivalent manner.

% default ULA
hula = phased.ULA('NumElements',2,'ElementSpacing',0.5);
% Construct steering vector
hsv = phased.SteeringVector('SensorArray',hula);
sv = step(hsv,3e8,[45;0]);
x =[1 -1 1 -1]';
y1 = x*sv.';
% compare y1 to y

Narrowband Collector for a Single Antenna Element

The Sensor property of phased.Collector can consist of a single antenna
element. In this example, create a custom antenna element using
phased.CustomAntennaElement. The antenna element has a cosine response
over elevation angles from [–90,90] degrees. Plot the polar pattern response
of the antenna at 1 GHz using an elevation cut at zero degrees azimuth.
Determine the antenna voltage response at 0 degrees azimuth and 45 degrees
elevation.

1-27

1 Phased Arrays

ha = phased.CustomAntennaElement;
ha.AzimuthAngles = -180:180;
ha.ElevationAngles = -90:90;
ha.RadiationPattern = mag2db(...

repmat(cosd(ha.ElevationAngles)',1,numel(ha.AzimuthAngles)));
plotResponse(ha,1e9,'Format','polar','RespCut','El');
resp = step(ha,1e9,[0; 45])

The antenna voltage response at zero degrees azimuth and 45 degrees
elevation is cosd(45) as expected.

Assume a narrowband sinusoidal input incident on the antenna element from
0 degrees azimuth and 45 degrees elevation. Determine the signal collected at
the element.

hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9)
x =[1 -1 1 -1]';
y = step(hc,x,[0; 45]);
% equivalent to y1 = x*cosd(45);

Wideband Signal Collection

Use phased.WidebandCollector to model the collection of a wideband input
by a sensor element or an array. The wideband collector decomposes the

1-28

Signal Collection

input into subbands and computes the steering vector for each subband. The
modifiable properties of the phased.WidebandCollector object are:

• CarrierFrequency — Carrier frequency in hertz.

• ModulatedInput — A logical property indicating whether the signal is
demodulated to the baseband.

• PropagationSpeed— Propagation speed of the waveform.

• SampleRate — Sampling rate

• Sensor— Handle to a sensor element or sensor array.

• Wavefront — Specifies the type of incoming wave as 'Plane' or
'Unspecified'. When you set the Wavefrontproperty to 'Plane', the
input signals are multiple plane waves impinging on the entire array.
Each plane wave is received by all collecting elements. If you set the
Wavefront property to 'Unspecified', the input signal are individual
waves impinging on individual sensors.

• WeightsInputPort — A logical property indicating whether to apply
weights to signals radiated by different elements in the array. If you set this
property to true, input the actual weights when you call the step method.

Simulate the reception of a wideband acoustic signal by a single
omnidirectional microphone element.

x = randn(10,1);

hmic = phased.OmnidirectionalMicrophoneElement(...

'FrequencyRange',[20 20e3],'BackBaffled',true)

hwb = phased.WidebandCollector('Sensor',hmic,...

'PropagationSpeed',340,'SampleRate',50e3,...

'ModulatedInput',false)

y = step(hwb,x,[30;10]);

1-29

1 Phased Arrays

1-30

2

Waveforms, Transmitter,
and Receiver

• “Rectangular Pulse Waveforms” on page 2-2

• “Linear Frequency Modulated Pulse Waveforms” on page 2-6

• “Stepped FM Pulse Waveforms” on page 2-11

• “Phase-Coded Waveforms” on page 2-14

• “Waveforms with Staggered PRFs” on page 2-19

• “Transmitter” on page 2-21

• “Receiver Preamp” on page 2-25

• “Radar Equation” on page 2-30

2 Waveforms, Transmitter, and Receiver

Rectangular Pulse Waveforms
Define the following function of time:

a t
t

() =
≤ ≤⎧

⎨
⎩

1 0
0


otherwise

Assume that a radar transmits a signal of the form:

x t a t tc() ()sin()= 

where ωc denotes the carrier frequency. Note that a(t) represents an
on-off rectangular amplitude modulation of the carrier frequency. After
demodulation, the complex envelope of x(t) is the real-valued rectangular
pulse a(t) of duration τ seconds.

To create a rectangular pulse waveform, use phased.RectangularWaveform .

The rectangular pulse waveform has the following modifiable properties:

• SampleRate — Sampling rate in Hz

• PulseWidth — Pulse duration in seconds

• PRF — Pulse repetition frequency in Hz

• OutputFormat — Output format in pulses or samples

• NumSamples— Number of samples in the output when the OutputFormat
property is 'Samples'

• NumPulses — Number of pulses in the output when the OutputFormat
property is 'Pulses'

Enter the following to construct a rectangular pulse waveform with a duration
of 50 μs, a sample rate of 1 megahertz (Hz), and a pulse repetition frequency
(PRF) of 10 kHz.

hrect = phased.RectangularWaveform('SampleRate',1e6,...
'PulseWidth',5e-5,'PRF',1e4);

2-2

Rectangular Pulse Waveforms

A rectangular pulse has a bandwidth in hertz that is approximately the
reciprocal of that pulse’s duration. You can determine the bandwidth of the
rectangular pulse with:

bw = bandwidth(hrect);
% compare to 1/hrect.PulseWidth

Create a rectangular pulse with a duration of 100 μs and a PRF of 1 kHz. Set
the number of pulses in the output equal to two.

hrect = phased.RectangularWaveform('PulseWidth',100e-6,...
'PRF',1e3,'OutputFormat','Pulses','NumPulses',2);

Make a copy of your rectangular pulse and change the pulse width in your
original waveform to 10 μs.

hrect1 = clone(hrect);
hrect.PulseWidth = 10e-6;

hrect1 and hrect now specify different rectangular pulses because you
changed the pulse width of hrect.

Use the step method to return two pulses of your rectangular pulse
waveforms.

y = step(hrect);
y1 = step(hrect1);

Plot the real part of the waveforms.

totaldur = 2*1/hrect.PRF;
totnumsamp = totaldur*hrect.SampleRate;
t = unigrid(0,1/hrect.SampleRate,totaldur,'[)');
subplot(2,1,1)
plot(t.*1000,real(y)); axis([0 totaldur*1e3 0 1.5]);
title('Two 10-\musec duration pulses (PRF = 1 kHz)');
set(gca,'XTick',0:0.2:totaldur*1e3)
subplot(2,1,2);
plot(t.*1000,real(y1)); axis([0 totaldur*1e3 0 1.5]);

2-3

2 Waveforms, Transmitter, and Receiver

xlabel('Milliseconds');
title('Two 100-\musec duration pulses (PRF = 1 kHz)');
set(gca,'XTick',0:0.2:totaldur*1e3)

You can plot a single rectangular pulse by calling plot directly on the object
handle.

plot is a method of phased.RectangularWaveform. Thus plot can produce
an annotated graph of your pulse waveform. To produce an equivalently
informative graph of the output of step, you must write additional MATLAB®

code.

Compare the annotated and plain figures from the following code:

figure;
plot(hrect)
figure;
plot(real(y(1:10)))

2-4

Rectangular Pulse Waveforms

2-5

2 Waveforms, Transmitter, and Receiver

Linear Frequency Modulated Pulse Waveforms
Increasing the duration of a transmitted pulse increases its energy and
improves target detection capability. Conversely, reducing the duration of a
pulse improves the range resolution of the radar.

For a rectangular pulse, the duration of the transmitted pulse and the
processed echo are effectively the same. Therefore, the range resolution
of the radar and the target detection capability are coupled in an inverse
relationship.

Pulse compression techniques allow you to decouple the duration of the
pulse from its energy by effectively creating different durations for the
transmitted pulse and processed echo. Using a linear frequency modulated
pulse waveform is a popular choice for pulse compression.

The complex envelope of a linear FM pulse waveform with increasing
instantaneous frequency is:

x t a t e j t() () (/)=    2

where β is the bandwidth and τ is the pulse duration.

If you denote the phase by Θ(t), the instantaneous frequency is:

1
2




d t
dt

t
Θ() =

which is a linear function of t with slope equal to β/τ.

The complex envelope of a linear FM pulse waveform with decreasing
instantaneous frequency is:

x t a t e j t t() () / ()= − −  2 2

Pulse compression waveforms have a time-bandwidth product, βτ, greater
than 1.

To create a linear FM pulse waveform use phased.LinearFMWaveform .

2-6

Linear Frequency Modulated Pulse Waveforms

The linear FM pulse waveform object has the following modifiable properties:

• SampleRate — Sample rate in Hz

• PulseWidth — Duration of a single pulse in seconds

• PRF — Pulse repetition frequency in Hz

• SweepBandwidth — Sweep bandwidth in Hz

• SweepDirection — Sweep direction as 'Up' (default) or 'Down'
corresponding to increasing and decreasing instantaneous frequency.

• Envelope— Amplitude modulation of the pulse waveform. Envelope can
be either 'Rectangular' (default) or 'Gaussian'

The rectangular envelope is:

a t
t

() =
≤ ≤⎧

⎨
⎩

1 0
0


otherwise

where τ is the pulse duration.

The Gaussian envelope is:

a t e tt() /  2 2

0

• OutputFormat — Output format in pulses or samples

• NumSamples— Number of samples in the output when the OutputFormat
property is 'Samples'

• NumPulses — Number of pulses in the output when the OutputFormat
property is 'Pulses'

For example, the following command constructs a linear FM pulse with
a sample rate of 1 MHz, a pulse duration of 50 μs with an increasing
instantaneous frequency, and a sweep bandwidth of 100 kHz. The amplitude
modulation is rectangular.

hfm1 = phased.LinearFMWaveform('SampleRate',1e6,...
'PulseWidth',5e-5,'PRF',1e4,...
'SweepBandwidth',1e5,'SweepDirection','Up',...
'Envelope','Rectangular',...

2-7

2 Waveforms, Transmitter, and Receiver

'OutputFormat','Pulses','NumPulses',1);

Linear FM Pulse Waveforms

Design a linear FM pulse waveform with a duration of 100 μs, a bandwidth of
200 kHz, and a PRF of 1 kHz. Use the default values for the other properties.
Compute the time-bandwidth product and plot the real part of the pulse
waveform.

hfm = phased.LinearFMWaveform('PulseWidth',100e-6,...
'SweepBandwidth',2e5,'PRF',1e3);

% time-bandwidth product
disp(hfm.PulseWidth*hfm.SweepBandwidth)
% plot the real part of the pulse
plot(hfm)

Use the step method to obtain your pulse waveform, and plot the real and
imaginary parts of one pulse repetition interval.

y = step(hfm);
t = unigrid(0,1/hfm.SampleRate,1/hfm.PRF,'[)');
figure;
subplot(2,1,1)
plot(t,real(y))
axis tight;

2-8

Linear Frequency Modulated Pulse Waveforms

title('Real Part');
subplot(2,1,2);
plot(t,imag(y)); xlabel('Seconds');
title('Imaginary Part');
axis tight;

Comparing Autocorrelation for Rectangular and Linear FM
Waveforms

This example shows how to use ambgfun to compute the ambiguity
function magnitudes for a rectangular and linear FM pulse waveform of
the same duration and PRF. Use the zero Doppler cut (magnitudes of the
autocorrelation sequences) to illustrate pulse compression in the linear FM
pulse waveform.

hrect = phased.RectangularWaveform('PRF',2e4);
hfm = phased.LinearFMWaveform('PRF',2e4);
xrect = step(hrect);
xfm = step(hfm);
[ambrect,delay] = ambgfun(xrect,hrect.SampleRate,hrect.PRF,...

'Cut','Doppler');
ambfm = ambgfun(xfm,hfm.SampleRate,hfm.PRF,...

'Cut','Doppler');
% Plot the results

2-9

2 Waveforms, Transmitter, and Receiver

subplot(211);
stem(delay,ambrect)
title('Autocorrelation of Rectangular Pulse');
axis([-5e-5 5e-5 0 1]); set(gca,'XTick',1e-5 * (-5:5))
subplot(212);
stem(delay,ambfm)
xlabel('Delay (seconds)');
title('Autocorrelation of Linear FM Pulse');
axis([-5e-5 5e-5 0 1]); set(gca,'XTick',1e-5 * (-5:5))

See Waveform Analysis Using the Ambiguity Function for a detailed demo.

2-10

Stepped FM Pulse Waveforms

Stepped FM Pulse Waveforms
A stepped frequency pulse waveform consists of a series of N narrowband
pulses. The frequency is increased from step to step by a fixed amount, Δf,
in Hz.

Similar to linear FM pulse waveforms, stepped frequency waveforms are a
popular pulse compression technique. Using this approach enables you to
increase the range resolution of the radar without sacrificing target detection
capability.

To create a stepped FM pulse waveform, use phased.SteppedFMWaveform.

The stepped frequency pulse waveform has the following modifiable
properties:

• SampleRate — Sampling rate in Hz

• PulseWidth — Pulse duration in seconds

• PRF — Pulse repetition frequency in Hz

• FrequencyStep — Frequency step in Hz

• NumSteps — Number of frequency steps

• OutputFormat — Output format in pulses or samples

• NumSamples— Number of samples in the output when the OutputFormat
property is 'Samples'

• NumPulses — Number of pulses in the output when the OutputFormat
property is 'Pulses'

Enter the following to construct a stepped FM pulse waveform with a pulse
duration (width) of 50 μs, a PRF of 10 kHz, and five steps of 20 kHz. The
sampling rate is 1 MHz. By default the OutputFormat property is equal to
'Pulses' and the number of pulses in the output is equal to one. The example
uses the bandwidth method to demonstrate that the bandwidth of the stepped
FM pulse waveform is the product of the frequency step and the number of
steps Obj.FrequencyStep*Obj.Numsteps.

hs = phased.SteppedFMWaveform('SampleRate',1e6,...

2-11

2 Waveforms, Transmitter, and Receiver

'PulseWidth',5e-5,'PRF',1e4,...
'FrequencyStep',2e4,'NumSteps',5);

bandwidth(hs)
% equal to hs.NumSteps*hs.FrequencyStep

Because the OutputFormat property is set to 'Pulses' and the NumPulses
property is set to 1, calling the step method returns one pulse repetition
interval (PRI). The pulse duration within that interval is equal to the
PulseWidth property. The remainder of the PRI consists of zeros.

The initial pulse has a frequency of zero, and is a DC pulse. With the
NumPulses property set to 1, each time you use step, the frequency of the
narrowband pulse increments by the value of the FrequencyStep property. If
you call step more times than the value of the NumSteps property, the process
repeats, starting over with the DC pulse.

Use step to return successively higher frequency pulses. Plot the pulses one
by one in the same figure window. Pause the loop to visualize the increment
in frequency with each successive call to step. Make an additional call to step
to demonstrate that the process starts over with the DC (rectangular) pulse.

t = unigrid(0,1/hs.SampleRate,1/hs.PRF,'[)');
for i = 1:hs.NumSteps

plot(t,real(step(hs)));
pause(0.5);
axis tight;

end
% calling step again starts over with a DC pulse
y = step(hs);

The next figure shows the plot in the final iteration of the loop.

2-12

Stepped FM Pulse Waveforms

2-13

2 Waveforms, Transmitter, and Receiver

Phase-Coded Waveforms

In this section...

“When to Use Phase-Coded Waveforms” on page 2-14

“How to Create Phase-Coded Waveforms” on page 2-14

“Basic Radar Using Phase-Coded Waveform” on page 2-15

When to Use Phase-Coded Waveforms
Situations in which you might use a phase-coded waveform instead of another
type of waveform include:

• When a rectangular pulse cannot provide both of these characteristics:

- Short enough pulse for good range resolution

- Enough energy in the signal to detect the reflected echo at the receiver

• When two or more radar systems are close to each other and you want to
reduce interference among them.

• When digital processing suggests using a waveform with a discrete set of
phases. For example, a Barker-coded waveform is a bi-phase waveform.

Conversely, you might use another waveform instead of a phase-coded
waveform in the following situations:

• When you need to detect or track high-speed targets

Phase-coded waveforms tend to perform poorly when signals have Doppler
shifts.

• When the hardware requirements for phase-coded waveforms are
prohibitively expensive

How to Create Phase-Coded Waveforms
To implement a phase-coded waveform, use the phased.PhaseCodedWaveform
System object. You can customize certain characteristics of the waveform,
including:

2-14

Phase-Coded Waveforms

• Type of phase code

• Number of chips

• Chip width

• Sample rate

• Pulse repetition frequency (PRF)

• Sequence index (Zadoff-Chu code only)

After you create a phased.PhaseCodedWaveform object, you can plot the
waveform using the plot method of this class. You can also generate samples
of the waveform using the step method.

For a full list of properties and methods, see the phased.PhaseCodedWaveform
reference page.

Basic Radar Using Phase-Coded Waveform
In the example in “Building The Basic Radar Workflow Model”, you can use a
phase-coded waveform in place of a rectangular waveform. To do so:

1 Replace the definition of hwav with the following definition.

hwav = phased.PhaseCodedWaveform('Type','Frank','NumChips',4,...
'ChipWidth',1e-6,'PRF',5e3,'OutputFormat','Pulses',...
'NumPulses',1);

2 Redefine the pulse width, tau, based on the properties of the new waveform.

tau = hwav.ChipWidth * hwav.NumChips;

For convenience, the complete code appears here. For a detailed explanation
of the code, see the original example, “Building The Basic Radar Workflow
Model”.

hwav = phased.PhaseCodedWaveform('Type','Frank','NumChips',4,...
'ChipWidth',1e-6,'PRF',5e3,'OutputFormat','Pulses',...
'NumPulses',1);

hant = phased.IsotropicAntennaElement('FrequencyRange',...

2-15

2 Waveforms, Transmitter, and Receiver

[1e9 10e9]);

htgt = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',0.5,'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9);

htxplat = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[0;0;0],'OrientationAxes',[1 0 0;0 1 0;0 0 1]);

htgtplat = phased.Platform('InitialPosition',[7000; 5000; 0],...
'Velocity',[-15;-10;0]);

[tgtrng,tgtang] = rangeangle(htgtplat.InitialPosition,...
htxplat.InitialPosition);

Pd = 0.9;
Pfa = 1e-6;
numpulses = 10;
SNR = albersheim(Pd,Pfa,10);

maxrange = 1.5e4;
lambda = physconst('lightspeed')/4e9;
tau = hwav.ChipWidth * hwav.NumChips;
Pt = radareqpow(lambda,maxrange,SNR,tau,'RCS',0.5,'Gain',20);

htx = phased.Transmitter('PeakPower',50e3,'Gain',20,...
'LossFactor',0,'InUseOutputPort',true,...
'CoherentOnTransmit',true);

hrad = phased.Radiator('Sensor',hant,...
'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hant,...
'PropagationSpeed',physconst('lightspeed'),...
'Wavefront','Plane','OperatingFrequency',4e9);

hrec = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...
'ReferenceTemperature',290,'SampleRate',1e6,...
'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

hspace = phased.FreeSpace(...

2-16

Phase-Coded Waveforms

'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9,'TwoWayPropagation',false,...
'SampleRate',1e6);

% Time step between pulses
T = 1/hwav.PRF;
% Get antenna position
txpos = htxplat.InitialPosition;
% Allocate array for received echoes
rxsig = zeros(hwav.SampleRate*T,numpulses);

for n = 1:numpulses
% Update the target position
tgtpos = step(htgtplat,T);
% Get the range and angle to the target
[tgtrng,tgtang] = rangeangle(tgtpos,txpos);
% Generate the pulse
sig = step(hwav);
% Transmit the pulse. Output transmitter status
[sig,txstatus] = step(htx,sig);
% Radiate the pulse toward the target
sig = step(hrad,sig,tgtang);
% Propagate the pulse to the target in free space
sig = step(hspace,sig,txpos,tgtpos);
% Reflect the pulse off the target
sig = step(htgt,sig);
% Propagate the echo to the antenna in free space
sig = step(hspace,sig,tgtpos,txpos);
% Collect the echo from the incident angle at the antenna
sig = step(hcol,sig,tgtang);
% Receive the echo at the antenna when not transmitting
rxsig(:,n) = step(hrec,sig,~txstatus);

end

rxsig = pulsint(rxsig,'noncoherent');
t = unigrid(0,1/hrec.SampleRate,T,'[)');
rangegates = (physconst('lightspeed')*t)/2;
plot(rangegates,rxsig); hold on;
xlabel('Meters'); ylabel('Power');
ylim = get(gca,'YLim');

2-17

2 Waveforms, Transmitter, and Receiver

plot([tgtrng,tgtrng],[0 ylim(2)],'r');

2-18

Waveforms with Staggered PRFs

Waveforms with Staggered PRFs

In this section...

“When to Use Staggered PRFs” on page 2-19

“Linear FM Waveform with Staggered PRF” on page 2-19

When to Use Staggered PRFs
Using a nonconstant PRF has important applications in radar. This approach
is called PRF staggering, or PRI staggering.

Uses of staggered PRFs include:

• The removal of Doppler ambiguities, or blind speeds, where Doppler
frequencies that are multiples of the PRF are aliased to zero

• Mitigation of the effects of jamming

To implement a staggered PRF, configure your waveform object with a vector
instead of a scalar as the PRF property value.

Linear FM Waveform with Staggered PRF
Model a linear FM pulse waveform with two PRFs, 1 and 2 kHz. Use a linear
FM pulse with a sweep bandwidth of 200 kHz and a duration of 100 μs. The
sample rate is 1 MHz. Output 5 pulses.

prfs = [1e3 2e3];
hfm = phased.LinearFMWaveform('PRF',prfs,...

'SweepBandwidth',200e3,...
'PulseWidth',100e-6,'NumPulses',5);

wf = step(hfm);
T = length(wf)*(1/hfm.SampleRate);
t = unigrid(0,1/hfm.SampleRate,T,'[)');
plot(t.*1000,real(wf))
set(gca,'xtick',[0 1 1.5 2.5 3]);
xlabel('milliseconds');

2-19

2 Waveforms, Transmitter, and Receiver

2-20

Transmitter

Transmitter

In this section...

“Transmitter Object” on page 2-21

“Phase Noise” on page 2-23

Transmitter Object
The phased.Transmitter object enables you to model key components of
the radar equation including the peak transmit power, the transmit gain,
and a system loss factor. You can use phased.Transmitter together with
radareqpow, radareqrng, and radareqsnr, to relate the received echo power
to your transmitter specifications.

While the preceding functionality is important in applications dependent on
amplitude such as signal detectability, Doppler processing depends on the
phase of the complex envelope. In order to accurately estimate the radial
velocity of moving targets, it is important that the radar operates in either
a fully coherent or pseudo-coherent mode. In the fully coherent, or coherent
on transmit, mode, the phase of the transmitted pulses is constant. Constant
phase provides you with a reference to detect Doppler shifts.

A transmitter that applies a random phase to each pulse creates phase noise
that can obscure Doppler shifts. If the components of the radar do not enable
you to maintain constant phase, you can create a pseudo-coherent, or coherent
on receive radar by keeping a record of the random phase errors introduced by
the transmitter. The receiver can correct for these errors by modulation of the
complex envelope. The phased.Transmitter object enables you to model both
coherent on transmit and coherent on receive behavior.

The transmitter object has the following modifiable properties:

• PeakPower — Peak transmit power in watts

• Gain — Transmit gain in decibels

• LossFactor — Loss factor in decibels

• InUseOutputPort — Track transmitter’s status. Setting this property to
true outputs a vector of 1s and 0s indicating when transmitter is on and

2-21

2 Waveforms, Transmitter, and Receiver

off. In a monostatic radar, the transmitter and receiver cannot operate
simultaneously.

• CoherentOnTransmit — Preserve coherence among transmitter pulses.
Setting this property to true (the default) models the operation of a fully
coherent transmitter where the pulse-to-pulse phase is constant. Setting
this property to false introduces random phase noise from pulse to pulse
and models the operation of a non-coherent transmitter.

• PhaseNoiseOutputPort— Output the random pulse phases introduced by
non-coherent operation of the transmitter. This property only applies if the
CoherentOnTransmit property is false. By keeping a record of the random
pulse phases, you can create a pseudo-coherent, or coherent on receive radar.

Construct a transmitter with a peak transmit power of 1000 watts, a transmit
gain of 20 decibels (dB), and a loss factor of 0 dB. Set the InUseOutPutPort
property to true to record the transmitter’s status.

htx = phased.Transmitter('PeakPower',1e3,'Gain',20,...
'LossFactor',0,'InUseOutputPort',true)

Construct a pulse waveform for transmission. In this example, use a
100-microsecond linear FM pulse with a bandwidth of 200 kHz. Use the
default sweep direction and sample rate. Set the PRF to 2 kHz.

hpuls = phased.LinearFMWaveform('PulseWidth',100e-6,'PRF',2e3,...
'SweepBandwidth',2e5,'OutputFormat','Pulses','NumPulses',1);

Obtain the pulse waveform using the step method of the waveform
object. Transmit the waveform using the step method of the transmitter
object, hpuls. The output is one pulse repetition interval because the
NumPulses property of the waveform object is equal to 1. The pulse
waveform values are scaled based on the peak transmit power and
the ratio of the transmitter gain to loss factor. The scaling factor is
sqrt(htx.PeakPower*db2pow(htx.Gain-htx.LossFactor)).

wf = step(hpuls);
[txoutput,txstatus] = step(htx,wf);
t = unigrid(0,1/hpuls.SampleRate,1/hpuls.PRF,'[)');
subplot(211)
plot(t,real(txoutput));
axis tight; grid on; ylabel('Amplitude');

2-22

Transmitter

title('Transmitter Output (real part)- One PRI');
subplot(212)
plot(t,txstatus);
axis([0 t(end) 0 1.5]); xlabel('Seconds'); grid on;
ylabel('Off-On Status');
set(gca,'ytick',[0 1]);
title('Transmitter Status');

Phase Noise
To model a coherent on receive radar, you can set the CoherentOnTransmit
property to false and the PhaseNoiseOutputPort property to true. You can
output the random phase added to each sample with step.

To illustrate this process, the following example uses a rectangular pulse
waveform with five pulses. A random phase is added to each sample of the
waveform. Compute the phase of the output waveform and compare the phase
to the phase noise returned by the step method.

For convenience, set the gain of the transmitter to 0 dB, the peak power to 1
W, and seed the random number generator to ensure reproducible results.

hrect = phased.RectangularWaveform('NumPulses',5);
htx = phased.Transmitter('CoherentOnTransmit',false,...

'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...

2-23

2 Waveforms, Transmitter, and Receiver

'SeedSource','Property','Seed',1000);
wf = step(hrect);
[txtoutput,phnoise] = step(htx,wf);
phdeg = radtodeg(phnoise);
phdeg(phdeg>180)= phdeg(phdeg>180)-360;
plot(wf); title('Input Waveform');
axis([0 length(wf) 0 1.5]); ylabel('Amplitude');
grid on;
figure;
subplot(2,1,1)
plot(radtodeg(atan2(imag(txtoutput),real(txtoutput))))
title('Phase of the Output'); ylabel('Degrees');
axis([0 length(wf) -180 180]); grid on;
subplot(2,1,2)
plot(phdeg); title('Phase Noise'); ylabel('Degrees');
axis([0 length(wf) -180 180]); grid on;

The figure on the left shows the waveform. The phase of each pulse at the
input to the transmitter is zero. The bottom right figure shows the phase
added to each sample. The top right show the phase of the transmitter output
waveform. Focus on the first 100 samples. The pulse waveform is equal to
1 for samples 1–50 and 0 for samples 51–100. The added random phase is a
constant –124.7 degrees for samples 1–100, but this affects the output only
when the pulse waveform is nonzero. In the output waveform, you see that
the output waveform has a phase of –124.7 degrees for samples 1–50 and 0
for 51–100. Examining the transmitter output and phase noise for samples
where the input waveform is nonzero, you see that the phase output of step
and the phase of the transmitter output agree.

2-24

Receiver Preamp

Receiver Preamp
The phased.ReceiverPreamp object enables you to model the effects of gain
and component-based noise on the signal-to-noise ratio (SNR) of received
signals. phased.ReceiverPreamp operates on baseband signals. The object
is not intended to model system effects at RF or intermediate frequency
(IF) stages.

The phased.ReceiverPreamp has the following modifiable properties:

• EnableInputPort — A logical property that enables you to specify when
the receiver is on or off. Input the actual status of the receiver as a vector
to step. This property is useful when modeling a monostatic radar system.
In a monostatic radar, it is important to ensure the transmitter and
receiver are not operating simultaneously. See phased.Transmitter and
“Transmitter” on page 2-21.

• Gain — Gain in dB

• LossFactor — Loss factor in dB.

• NoiseBandwidth— Bandwidth of the noise spectrum in Hz

• NoiseFigure — Receiver noise figure in dB

• ReferenceTemperature— Reference temperature of the receiver in kelvin

• EnableInputPort— Add input to specify when the receiver is active

• PhaseNoiseInputPort— Add input to specify phase noise for coherent on
receive receiver

• SeedSource — Enables you to specify the seed of the random number
generator

The noise figure is a dimensionless quantity that indicates how much a
receiver deviates from an ideal receiver in terms of internal noise. An ideal
receiver only produces the expected thermal noise power for a given noise
bandwidth and temperature. A noise figure of 1 indicates that the noise power
of a receiver equals the noise power of an ideal receiver. Because an actual
receiver cannot exhibit a noise power value less than an ideal receiver, the
noise figure is always greater than or equal to one. In dB this means that the
noise figure must be nonnegative. The minimum possible value is 0 dB.

2-25

2 Waveforms, Transmitter, and Receiver

To model the effect of the receiver preamp on the signal,
phased.ReceiverPreamp computes the effective system noise temperature
by taking the product of the reference temperature and the noise figure
converted to a power measurement with db2pow. See systemp for details.

phased.ReceiverPreamp computes the noise power as product of the
Boltzmann constant, the effective system noise temperature, and the noise
bandwidth.

The additive noise for the receiver is modeled as a zero-mean complex white
Gaussian noise vector with variance equal to the noise power. The real and
imaginary parts of the noise vector each have variance equal to 1/2 the noise
power.

The signal is scaled by the ratio of the receiver gain to the loss factor expressed
as a power ratio. If you express the gain and loss factor as powers by G and L
respectively and the noise power as σ2, the output is equal to :

y n
G
L

x n w n[] [] [] 

2

where x[n] is the complex-valued input signal and w[n] is a zero-mean
complex white Gaussian noise sequence.

Model Receiver Effects on Sinusoidal Input

Specify a phased.ReceiverPreamp object with a gain of 20 dB, a noise
bandwidth of 1 MHz, a noise figure of 0 dB, and a reference temperature
of 290 kelvin.

hr = phased.ReceiverPreamp('Gain',20,'NoiseBandwidth',1e6,...
'NoiseFigure',0,'ReferenceTemperature',290,...
'SampleRate',1e6,'SeedSource','Property','Seed',1e3);

Assume a 100–Hz sine wave input with an amplitude of 1 microvolt. Because
the Phased Array System Toolbox™ assumes all modeling is done in the
baseband, use a complex exponential as the input to the step method.

t = unigrid(0,0.001,0.1,'[)');
x = 1e-6*exp(1j*2*pi*100*t).';

2-26

Receiver Preamp

y = step(hr,x);

The output of the stepmethod is complex-valued as expected. To demonstrate
how this output is produced, the noise power is equal to:

noisepow = physconst('Boltzmann')*...
systemp(0,hr.ReferenceTemperature)*hr.NoiseBandwidth;

The noise power is the variance of the additive white noise.

To determine the correct amplitude scaling of the input signal, note that the
gain is 20 dB. Because the loss factor in this case is 0 dB, the scaling factor for
the input signal is found by solving the following equation for G:

10 2010
2log ()G 

The scaling factor is 10. You can scale the input signal by a factor of ten and
add complex white Gaussian noise with the appropriate variance to produce
an output equivalent to the preceding call to step. The following code assumes
that the noise bandwidth equals the sample rate of the receiver preamp.

s = RandStream('mt19937ar','Seed',1e3);
y1 = 10*x + sqrt(noisepow/2) * ...

(randn(s,size(x))+1j*randn(s,size(x)));

Compare y to y1.

Model Coherent on Receive Behavior

To model a coherent on receive monostatic radar use the EnableInputPort
and PhaseNoiseInputPort properties. In a monostatic radar, the transmitter
and receiver cannot operate simultaneously. Therefore, it is important to keep
track of when the transmitter is active so that you can disable the receiver
at those times. You can input a record of when the transmitter is active by
setting the EnableInputPort to true and providing this record to the step
method.

In a coherent on receive radar, the receiver corrects for the phase noise
introduced at the transmitter by using the record of those phase errors. You

2-27

2 Waveforms, Transmitter, and Receiver

can input a record of the transmitter phase errors to step when you set the
PhaseNoiseInputPort property to true.

To illustrate this, construct a rectangular pulse waveform with five pulses.
The PRF is 10 kHz and the pulse width is 50 μs. The PRI is exactly two times
the pulse width so the transmitter alternates between active and inactive
time intervals of the same duration. For convenience, set the gains on both
the transmitter and receiver to 0 dB and the peak power on the transmitter to
1 watt.

Use the PhaseNoiseOutputPort and InUseOutputPort properties on the
transmitter to record the phase noise and the status of the transmitter.

Enable the EnableInputPort and PhaseNoiseInputPort properties on the
receiver preamp to determine when the receiver is active and to correct for
the phase noise introduced at the transmitter.

Delay the output of the transmitter using delayseq to simulate the waveform
arriving at the receiver preamp when the transmitter is inactive and the
receiver is active.

hrect = phased.RectangularWaveform('NumPulses',5);
htx = phased.Transmitter('CoherentOnTransmit',false,...

'PhaseNoiseOutputPort',true,'Gain',0,'PeakPower',1,...
'SeedSource','Property','Seed',1000,'InUseOutputPort',true);

wf = step(hrect);
[txtoutput,txstatus,phnoise] = step(htx,wf);
txtoutput = delayseq(txtoutput,hrect.PulseWidth,...

hrect.SampleRate);
hrc = phased.ReceiverPreamp('Gain',0,...

'PhaseNoiseInputPort',true,'EnableInputPort',true);
y = step(hrc,txtoutput,~txstatus,phnoise);
subplot(2,1,1)
plot(real(txtoutput));
title('Delayed Transmitter Output with Phase Noise');
ylabel('Amplitude');
subplot(2,1,2)
plot(real(y));
xlabel('Samples'); ylabel('Amplitude');
title('Received Signal with Phase Correction');

2-28

Receiver Preamp

2-29

2 Waveforms, Transmitter, and Receiver

Radar Equation
The point target radar range equation estimates the power at the input to the
receiver for a target of a given radar cross section at a specified range. The
model is deterministic and assumes isotropic radiators. The equation for the
power at the input to the receiver is:

P
P G G

R R L
r

t t r

t r

=
 



2

3 2 24()

where the terms in the equation are:

• Pr — Received power in watts

• Pt — Peak transmit power in watts

• Gt — Transmitter gain in decibels

• Gr— Receiver gain in decibels. If the radar is monostatic, the transmitter
and receiver gains are identical.

• λ — Radar operating frequency wavelength in meters

• σ— Target’s nonfluctuating radar cross section in square meters

• L — General loss factor in decibels that accounts for both system and
propagation loss

• Rt — Range from the transmitter to the target

• Rr— Range from the receiver to the target. If the radar is monostatic, the
transmitter and receiver ranges are identical.

The equation for the power at the input to the receiver represents the signal
term in the signal-to-noise (SNR) ratio. To model the noise term, assume
the thermal noise in the receiver has a white noise power spectral density
(PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise temperature.
The receiver acts as a filter to shape the white noise PSD. Assume that the
magnitude squared receiver frequency response approximates a rectangular

2-30

Radar Equation

filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ. The
total noise power at the output of the receiver is:

N
kTFn=


where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is
referred to as the system temperature and is denoted by Ts, so that Ts = TFn .

Using the equation for the received signal power and the output noise power,
the receiver output SNR is:

P
N

P G G

kT R R L
r t t r

s t r

=
  



2

3 2 24()

Solving for the required peak transmit power:

P
P kT R R L

N G G
t

r s t r

t r

=
()4 3 2 2

2


  

The preceding equations are implemented in the Phased Array System
Toolbox by the functions: radareqpow, radareqrng, and radareqsnr. These
functions and the equations on which they are based are valuable tools in
radar system design and analysis.

Determine the Required Transmitter Peak Power Using the Radar
Equation

You implement a noncoherent detector with a monostatic radar operating
at 5 GHz. Based on the noncoherent integration of ten one-microsecond
pulses, you want to achieve a detection probability of 0.9 with a maximum
false-alarm probability of 10–6 for a target with a nonfluctuating radar cross
section (RCS) of 1 m2 at 30 km. The transmitter gain is 30 dB. Determine
the required SNR at the receiver and use the radar equation to calculate
the required peak transmit power.

2-31

2 Waveforms, Transmitter, and Receiver

Use Albersheim’s equation to determine the required SNR for the specified
detection and false-alarm probabilities.

Pd = 0.9;
Pfa = 1e-6;
NumPulses = 10;
SNR = albersheim(Pd,Pfa,10)

The required SNR is approximately 5 dB. Use the function radareqpow to
determine the required peak transmit power in watts.

tgtrng = 30e3; % target range in meters
lambda = 3e8/5e9; % wavelength of the operating frequency
RCS = 1; % target RCS
pulsedur = 1e-6; %pulse duration
G = 30; % transmitter and receiver gain (monostatic radar)
Pt = radareqpow(lambda,tgtrng,SNR,pulsedur,'rcs',RCS,'gain',G)

The required peak power is approximately 5.6 kW.

Determine Maximum Detectable Range for a Monostatic Radar

Assume that the minimum detectable SNR at the receiver of a monostatic
radar operating at 1 GHz is 13 dB. Use the radar equation to determine the
maximum detectable range for a target with a nonfluctuating RCS of 0.5 m2 if
the radar has a peak transmit power of 1 MW. Assume the transmitter gain is
40 dB and the radar transmits a pulse that is 0.5 μs in duration.

tau = 0.5e-6; % pulse duration
G = 40; % transmitter and receiver gain (monostatic radar)
RCS = 0.5; % target RCS
Pt = 1e6; %peak transmit power in watts
lambda = 3e8/1e9;
SNR = 13; % required SNR in dB
maxrng = radareqrng(lambda,SNR,Pt,tau,'rcs',RCS,'gain',G)

The maximum detectable range is approximately 345 km.

2-32

Radar Equation

Estimate Output SNR at the Receiver in a Bistatic Radar

Estimate the output SNR for a target with an RCS of 1 m2. The radar is
bistatic. The target is located 50 km from the transmitter and 75 km from the
receiver. The radar operating frequency is 10 GHz. The transmitter has a
peak transmit power of 1 MW with a gain of 40 dB. The pulse width is 1 μs.
The receiver gain is 20 dB.

lambda = physconst('lightspeed')/10e9;
tau = 1e-6;
Pt = 1e6;
TxRvRng =[50e3 75e3];
Gain = [40 20];
snr = radareqsnr(lambda,TxRvRng,Pt,tau,'Gain',Gain);

The estimated SNR is approximately 9 dB.

2-33

2 Waveforms, Transmitter, and Receiver

2-34

3

Beamforming

• “Conventional Beamforming” on page 3-2

• “Adaptive Beamforming” on page 3-9

• “Wideband Beamforming” on page 3-13

3 Beamforming

Conventional Beamforming
Assume N sensors, which are linear and time-invariant. Let xk(t) denote
the space-time wavefield in continuous time at some reference point. For
convenience, you can use the array center as the reference point. You can
model the output signal, yk(t), at the k-th sensor as:

y t h t x t tk k k k k() () () ()   

where hk(t) is the impulse response of the k-th sensor, xk(t-τk) is the delayed
space-time signal at the k-th sensor, and εk(t) is the noise at the k-th sensor.
The noise term includes contributions both external and internal to the
sensor. The delay term, τk, is the model parameter that characterizes the
source location with respect to the array.

For a narrowband signal modulated around a carrier frequency, ωc, the time
delay at the k-th sensor is equivalent to a phase shift:

e j c k  

Using the plane wave assumption and knowledge of the array geometry, you
can sometimes derive an explicit expression for the delay term. Consider
the case of a uniform linear array (ULA) with a plane wave incident on the
array from a broadside angle of θ. Taking sensor 1 as the reference point, the
delay at the k-th sensor is:




k
k d

c


() sin()1

where c is the propagation speed of the wave and d is the distance between
array elements. The following figure illustrates this scenario.

3-2

Conventional Beamforming

Source

1

d

d sin(Θ)
Θ

2 3 4 5

Assuming that the sensor frequency responses at the carrier frequency are
identical, you can write the array transfer vector for the ULA as:

a

e

e

e

jd c

j d c

j N d c

()

•
•

.

sin()/

sin()/

() sin()/

























 

1

2

1






















By choosing an appropriate set of spatial filter weights, you can steer the
array to accentuate or attenuate specific angles of arrival.

The filter weights introduce phase shifts (delays) in the sensor output. When
the individual sensor outputs are summed, the array output emphasizes a
waveform incident from a particular angle of arrival.

You can implement a narrowband phase shift beamformer with
phased.PhaseShiftBeamformer.

3-3

3 Beamforming

The phased.PhaseShiftBeamformer object has six modifiable properties.

• SensorArray — Handle to a sensor array

• PropagationSpeed — Signal propagation speed

• OperatingFrequency — System operating frequency

• DirectionSource— Source of the beamforming direction. You can set this
property to either 'Property' (default) or 'InputPort'. When you specify
the DirectionSource value as 'Property', the beamforming direction
equals the value of the Direction property. When the DirectionSource
is 'InputPort', you supply the beamforming direction as an input to the
step method.

• Direction— Beamforming direction. This property only applies when the
DirectionSource property is 'Property'.

• WeightsOutputPort — Logical property indicating whether or not to
output the beamforming weights

Narrowband (Phase Shift) Beamformer with a ULA

Construct a ULA with 10 elements. Assume the carrier frequency is 1 GHz
and set the array element spacing to be one-half the carrier frequency
wavelength.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
hula = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);

The ULA sensors are isotropic antenna elements (see
phased.IsotropicAntennaElement). Set the frequency range of
the antenna elements to position the carrier frequency in the middle of the
operating range.

hula.Element.FrequencyRange = [8e8 1.2e9];

Simulate a test signal. For this example, use a simple rectangular pulse.

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205)= 1;

3-4

Conventional Beamforming

Assume the rectangular pulse is incident on the ULA from an angle of 30
degrees azimuth and 0 degrees elevation. Use the collectPlaneWave method
of the ULA object to simulate reception of the pulse waveform from the
specified angle.

angle_of_arrival = [30;0];
x = collectPlaneWave(hula,testsig,angle_of_arrival,fc);

x is a matrix with ten columns. Each column represents the received signal
at one of the array elements.

Corrupt the columns of x with complex-valued Gaussian noise. Reset the
default random number stream for reproducible results. Plot the magnitudes
of the received pulses at the first four elements of the ULA.

rng default
npower = 0.5;
x = x + sqrt(npower/2)*randn(size(x))+1j*randn(size(x));
subplot(221)
plot(t,abs(x(:,1))); title('Element 1 (magnitude)');
axis tight; ylabel('Magnitude');
subplot(222)
plot(t,abs(x(:,2))); title('Element 2 (magnitude)');
axis tight; ylabel('Magnitude');
subplot(223)
plot(t,abs(x(:,3))); title('Element 3 (magnitude)');
axis tight; xlabel('Seconds'); ylabel('Magnitude');
subplot(224)
plot(t,abs(x(:,4))); title('Element 4 (magnitude)');
axis tight; xlabel('Seconds'); ylabel('Magnitude');

3-5

3 Beamforming

Construct your phase-shift beamformer. Set the WeightsOutputPort property
to true to output the spatial filter weights.

hbf = phased.PhaseShiftBeamformer('SensorArray',hula,...
'OperatingFrequency',1e9,'Direction',angle_of_arrival,...
'WeightsOutputPort',true);

Apply the step method for the phase shift beamformer. The step method
computes and applies the correct weights for the specified angle. The
phase-shifted outputs from the ten array elements are then summed.

[y,w] = step(hbf,x);

Plot the magnitude of the output waveform along with the original waveform
for comparison.

subplot(211)
plot(t,abs(testsig)); axis tight;
title('Original Signal'); ylabel('Magnitude');
subplot(212)
plot(t,abs(y)); axis tight;
title('Received Signal with Beamforming');
ylabel('Magnitude'); xlabel('Seconds');

3-6

Conventional Beamforming

To examine the effect of the beamforming weights on the array response,
plot the array normalized power response both with—and without—the
beamforming weights.

azang = -180:30:180;
subplot(211)
plotResponse(hula,fc,physconst('LightSpeed'));
set(gca,'xtick',azang);
title('Array Response without Beamforming Weights');
subplot(212)
plotResponse(hula,fc,physconst('LightSpeed'),'weights',w);
set(gca,'xtick',azang);
title('Array Response with Beamforming Weights');

3-7

3 Beamforming

3-8

Adaptive Beamforming

Adaptive Beamforming
The weights in the phase shift beamformer illustrated in Narrowband
(Phase Shift) Beamformer with a ULA on page 3-4 are chosen independent
of any data received by the array. The weights in the narrowband phase
shift beamformer steer the array response in a specified direction, but do
not account for any interference scenarios. As a result, these conventional
beamformers are susceptible to interference signals, particularly if the
interference signals occur at sidelobes of the array response.

To account for interference signals, the Phased Array System Toolbox product
provides adaptive, or statistically optimum, beamformers:

• Linearly constrained minimum variance (LCMV) beamformers

• Minimum variance distortionless response (MVDR) beamformers

• Frost beamformers

The weights in an adaptive beamformer are chosen based on the statistics
of the received data. For example, an adaptive beamformer can improve the
SNR by using the received data to place nulls in the array response. These
nulls are placed at angles corresponding to the interference signals.

The following example demonstrates this for a linearly constrained minimum
variance (LCMV) beamformer.

LCMV Beamformer

This example uses code from the Narrowband (Phase Shift) Beamformer
with a ULA on page 3-4 example. Execute the code from that example before
you run this example.

Use phased.BarrageJammer as the interference source. Specify the barrage
jammer to have an effective radiated power of 10 W. The interference signal
from the barrage jammer is incident on the ULA at an angle of 120 degrees
azimuth and 0 degrees elevation.

hjammer = phased.BarrageJammer('ERP',10,'SamplesPerFrame',300);
jamsig = step(hjammer);
jammer_angle = [120;0];

3-9

3 Beamforming

jamsig = collectPlaneWave(hula,jamsig,jammer_angle,fc);

Add some low-level complex white Gaussian noise to simulate noise
contributions not directly associated with the jamming signal. Seed the
random number generator for reproducible results.

noisePwr = 0.00001; % noise power, 50dB SNR
rs = RandStream.create('mt19937ar','Seed',2008);
noise = sqrt(noisePwr/2)*...

(randn(rs,size(jamsig))+1j*randn(rs,size(jamsig)));
jamsig = jamsig+noise;
rxsig = x+jamsig;
[yout,w] = step(hbf,rxsig);

Implement the LCMV beamformer. Use the target-free data,jamsig, as
training data. Output the beamformer weights.

hstv = phased.SteeringVector('SensorArray',hula,...
'PropagationSpeed',physconst('LightSpeed'));

hLCMV = phased.LCMVBeamformer('DesiredResponse',1,...
'TrainingInputPort',true,'WeightsOutputPort',true);

hLCMV.Constraint = step(hstv,fc,angle_of_arrival);
hLCMV.DesiredResponse = 1;
[yLCMV,wLCMV] = step(hLCMV,rxsig,jamsig);
subplot(211)
plot(t,abs(yout)); axis tight;
title('Conventional Beamformer');
ylabel('Magnitude');
subplot(212);
plot(t,abs(yLCMV)); axis tight;
title('LCMV (Adaptive) Beamformer');
xlabel('Seconds'); ylabel('Magnitude');

3-10

Adaptive Beamforming

The adaptive beamformer significantly improves the SNR of the rectangular
pulse at 0.2 s.

Plot the array normalized power response for the conventional and LCMV
beamformers.

subplot(211)
plotResponse(hula,fc,physconst('LightSpeed'),'weights',w);
title('Array Response with Conventional Beamforming Weights');
subplot(212)
plotResponse(hula,fc,physconst('LightSpeed'),'weights',wLCMV);
title('Array Response with LCMV Beamforming Weights');

3-11

3 Beamforming

The LCMV beamforming weights place a null in the array response at the
arrival angle of the interference signal.

The Phased Array System Toolbox product provides additional
narrowband adaptive beamformers. See phased.FrostBeamformer and
phased.MVDRBeamformer. For a comprehensive list of supported algorithms,
see “Beamformers”.

See Conventional and Adaptive Beamformers for a demo.

3-12

Wideband Beamforming

Wideband Beamforming
Beamforming achieved by multiplying the sensor input by a complex
exponential with the appropriate phase shift only applies for narrowband
signals. In the case of wideband, or broadband, signals, the steering vector is
not a function of a single frequency.

The Phased Array System Toolbox product provides a number of
conventional and adaptive wideband beamformers. These include
phased.FrostBeamformer, phased.TimeDelayBeamformer, and
phased.TimeDelayLCMVBeamformer.

Wideband Conventional Time-Delay Beamforming

Assume an acoustic (pressure wave) chirp signal. The chirp signal has a
bandwidth of 1 kHz and propagates at a speed of 340 m/s at sea level.

c = 340; % speed of sound at sea level
t = linspace(0,1,5e4)';
sig = chirp(t,0,1,1e3);

Collect the acoustic chirp with a ten-element ULA. Use omnidirectional
microphone elements spaced less than one-half the wavelength of the 50 kHz
sampling frequency. The chirp is incident on the ULA with an angle of 45
degrees azimuth and 0 degrees elevation.

hmic = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

hula = phased.ULA('Element',hmic,'NumElements',10,...
'ElementSpacing',0.01);

hcol = phased.WidebandCollector('Sensor',hula,'SampleRate',5e4,...
'PropagationSpeed',c,'ModulatedInput',false);

sigang = [60; 0];
rsig = step(hcol,sig,sigang);
rsig = rsig+0.3*randn(size(rsig));

Apply a wideband conventional time-delay beamformer to improve the SNR
of the received signal.

htbf = phased.TimeDelayBeamformer('SensorArray',hula,...
'SampleRate',5e4,'PropagationSpeed',c,'Direction',sigang);

3-13

3 Beamforming

y = step(htbf,rsig);
subplot(2,1,1);
plot(t(1:5e3),real(rsig(1:5e3,5)));
title('Signal (real part) at the 5-th element of the ULA');
subplot(2,1,2);
plot(t(1:5e3),real(y(1:5e3)));
title('Signal (real part) with time-delay beamforming');
xlabel('Seconds');

See Acoustic Beamforming Using a Microphone Array for a demo of using
wideband beamforming to extract speech signals in noise.

3-14

4

Direction-of-Arrival (DOA)
Estimation

• “Beamscan DOA Estimation” on page 4-2

• “Super-resolution DOA Estimation” on page 4-4

4 Direction-of-Arrival (DOA) Estimation

Beamscan DOA Estimation
In many direction-of-arrival (DOA) estimation problems, an array of N
sensors receives a wavefield, which is the superposition of signals originating
from M < N narrowband sources. You denote the directions or angles of
arrival of the M sources as [Θ1, Θ2, ..., ΘM].

The Phased Array System Toolbox product provides a variety of DOA
estimation algorithms. See “Direction of Arrival (DOA)” for a comprehensive
list of supported algorithms.

The following example illustrates one supported DOA algorithm, the
nonparametric beamscan technique. The beamscan algorithm estimates the
M DOAs by scanning the array beam over a region of interest. The output
power is computed for each beam scan angle and the maxima are identified
as the DOA estimates.

Beamscan DOA

Construct a ULA consisting of ten elements. Assume the carrier frequency of
the incoming narrowband sources is 1 GHz.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
hula = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
hula.Element.FrequencyRange = [8e8 1.2e9];

Assume that there is a wavefield incident on the ULA consisting of two linear
FM pulses. The DOAs of the two sources are 30 degrees azimuth and 60
degrees azimuth. Both sources have elevation angles of zero degrees.

hwav = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',5e-6,'OutputFormat','Pulses','NumPulses',1);

sig1 = step(hwav);
sig2 = sig1;
ang1 = [30; 0];
ang2 = [60;0];
arraysig = collectPlaneWave(hula,[sig1 sig2],[ang1 ang2],fc);
rng default
npower = 0.01;

4-2

Beamscan DOA Estimation

noise = sqrt(npower/2)*...
randn(size(arraysig))+1j*randn(size(arraysig));

rxsig = arraysig+noise;

Implement a beamscan DOA estimator. Output the DOA estimates, and plot
the spatial spectrum.

hbeam = phased.BeamscanEstimator('SensorArray',hula,...
'OperatingFrequency',fc,'ScanAngles',-90:90,...
'DOAOutputPort',true,'NumSignals',2);

[y,sigang] = step(hbeam,rxsig);
plotSpectrum(hbeam);

See Direction of Arrival Estimation with Beamscan and MVDR for a demo.

4-3

4 Direction-of-Arrival (DOA) Estimation

Super-resolution DOA Estimation
The beamscan DOA estimator illustrated in Beamscan DOA on page 4-2 is
not able to resolve two separate signal sources when the angles of arrival both
fall within the main lobe of the array response.

To illustrate this, examine the array response of the ULA used in the
preceding example. Plot the response and zoom in on the main lobe for
visualization.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
hula = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
hula.Element.FrequencyRange = [8e8 1.2e9];
plotResponse(hula,fc,physconst('LightSpeed'));
axis([-25 25 -30 0]);

Assume that you have two signal sources with DOAs separated by ten
degrees. Because both DOAs fall inside the main lobe of the array response,
the beamscan DOA estimator can not resolve them as separate sources.

t = linspace(0,1,1000);
x1 = cos(2*pi*100*t)'; x2 = cos(2*pi*300*t)';
ang1 = [30; 0];
ang2 = [40;0];

4-4

Super-resolution DOA Estimation

arraysig = collectPlaneWave(hula,[x1 x2],[ang1 ang2],fc);
rng default
npower = 0.01;
noise = sqrt(npower/2)*...

randn(size(arraysig))+1j*randn(size(arraysig));
rxsig = arraysig+noise;

% Estimate DOAs using the beamscan estimator

hbeam = phased.BeamscanEstimator('SensorArray',hula,...
'OperatingFrequency',fc,'ScanAngles',-90:90,...
'DOAOutputPort',true,'NumSignals',2);

[~,sigang] = step(hbeam,rxsig);
plotSpectrum(hbeam);

The beamscan estimator does not resolve the two sources based on their DOAs.

The Phased Array System Toolbox product provides super-resolution DOA
estimators that improve the resolution of the nonparametric beamscan
estimator. The next example illustrates one such DOA estimator, using
phased.RootMUSICEstimator.

4-5

4 Direction-of-Arrival (DOA) Estimation

Root MUSIC DOA Estimation

In this example, use the root MUSIC DOA estimator to resolve the two signal
sources that fall within the main lobe of the array response. The entire code
example is presented for convenience.

% Construct the array
fc = 1e9;
lambda = physconst('LightSpeed')/fc;
hula = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
hula.Element.FrequencyRange = [8e8 1.2e9];
% Create the signals. Two sources with DOAs of 30 and 40
% degrees azimuth.
t = linspace(0,1,1000);
x1 = cos(2*pi*100*t)'; x2 = cos(2*pi*300*t)';
ang1 = [30; 0];
ang2 = [40;0];
arraysig = collectPlaneWave(hula,[x1 x2],[ang1 ang2],fc);
rng default
npower = 0.01;
noise = sqrt(npower/2)*...

randn(size(arraysig))+1j*randn(size(arraysig));
rxsig = arraysig+noise;

% Use a root MUSIC DOA estimator
hroot = phased.RootMUSICEstimator('SensorArray',hula,...

'OperatingFrequency',fc,'NumSignalsSource','Property',...
'NumSignals',2,'ForwardBackwardAveraging',true);

doa_est = step(hroot,rxsig);
% doa_est = [39.7984 30.1805]

See High Resolution Direction of Arrival Estimation for a demo.

4-6

5

Space-Time Adaptive
Processing (STAP)

• “Angle-Doppler Response” on page 5-2

• “Displaced Phase Center Antenna (DPCA) Pulse Canceller” on page 5-9

• “Adaptive Displaced Phase Center Antenna (ADPCA) Pulse Canceller”
on page 5-14

• “Sample Matrix Inversion (SMI) Beamformer” on page 5-21

5 Space-Time Adaptive Processing (STAP)

Angle-Doppler Response

In this section...

“Benefits of Visualizing Angle-Doppler Response” on page 5-2

“Angle-Doppler Response of a Stationary Target at a Stationary Array”
on page 5-2

“Angle-Doppler Response of a Stationary Target Return at a Moving Array”
on page 5-5

Benefits of Visualizing Angle-Doppler Response
Visualizing a signal in the angle-Doppler domain can help you identify
characteristics of the signal in direction and speed. You can distinguish
among targets moving at various speeds in various directions. If a transmitter
platform is stationary, returns from stationary targets map to zero in the
Doppler domain while returns from moving targets exhibit a nonzero Doppler
shift. If you visualize the array response in the angle-Doppler domain, a
stationary target produces a response at a specified angle and zero Doppler.

You can use the phased.AngleDopplerResponse object to visualize the
angle-Doppler response of input data. The phased.AngleDopplerResponse
object uses a conventional narrowband (phase shift) beamformer and an
FFT-based Doppler filter to compute the angle-Doppler response.

Angle-Doppler Response of a Stationary Target at
a Stationary Array
The array is a six-element uniform linear array (ULA) located at the global
origin [0;0;0]. The target is located at [5000; 5000; 0] and has a
nonfluctuating radar cross section (RCS) of 1 square meter. Both the array
and target are stationary.

The array operates at 4 GHz with elements spaced at one-half the operating
wavelength. The array transmits a rectangular pulse 2 microseconds in
duration with a pulse repetition frequency (PRF) of 5 kHz.

Construct the objects needed to simulate the target response at the array.

5-2

Angle-Doppler Response

hant = phased.IsotropicAntennaElement...
('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = physconst('lightspeed')/4e9;
hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);
hwav = phased.RectangularWaveform('PulseWidth',2e-006,...

'PRF',5e3,'SampleRate',1e6,'NumPulses',1);
hrad = phased.Radiator('Sensor',hula,...

'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hula,...
'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9);

htxplat = phased.Platform('InitialPosition',[0;0;0],...
'Velocity',[0;0;0]);

htgt = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

'Velocity',[0;0;0]);
hspace = phased.FreeSpace('OperatingFrequency',4e9,...

'TwoWayPropagation',false,'SampleRate',1e6);
hrx = phased.ReceiverPreamp('NoiseFigure',0,...

'EnableInputPort',true,'SampleRate',1e6,'Gain',40);
htx = phased.Transmitter('PeakPower',1e4,...

'InUseOutputPort',true,'Gain',40);

Propagate ten rectangular pulses to and from the target, and collect the
responses at the array.

PRF = 5e3;
NumPulses = 10;
wav = step(hwav);
tgtloc = htgtplat.InitialPosition;
txloc = htxplat.InitialPosition;
M = hwav.SampleRate*1/PRF;
N = hula.NumElements;
rxsig = zeros(M,N,NumPulses);

for n = 1:NumPulses
% get angle to target
[~,tgtang] = rangeangle(tgtloc,txloc);
% transmit pulse

5-3

5 Space-Time Adaptive Processing (STAP)

[txsig,txstatus] = step(htx,wav);
% radiate pulse
txsig = step(hrad,txsig,tgtang);
% propagate pulse to target
txsig = step(hspace,txsig,txloc,tgtloc);
% reflect pulse off stationary target
txsig = step(htgt,txsig);
% propagate pulse to array
txsig = step(hspace,txsig,tgtloc,txloc);
% collect pulse
rxsig(:,:,n) = step(hcol,txsig,tgtang);
% receive pulse
rxsig(:,:,n) = step(hrx,rxsig(:,:,n),~txstatus);

end

Determine and plot the angle-Doppler response. Place the string +Target at
the expected azimuth angle and Doppler frequency.

tgtdoppler = 0;
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);
tgtcell = val2ind(tgtrng,...

physconst('lightspeed')/(2*hwav.SampleRate));
snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
hadresp = phased.AngleDopplerResponse('SensorArray',hula,...

'OperatingFrequency',4e9, ...
'PropagationSpeed',physconst('lightspeed'),...
'PRF',PRF, 'ElevationAngle',tgtelang);

plotResponse(hadresp,snapshot);
text(tgtazang,tgtdoppler,'+Target');

5-4

Angle-Doppler Response

As expected, the angle-Doppler response shows the greatest response at zero
Doppler and 45 degrees azimuth.

Angle-Doppler Response of a Stationary Target
Return at a Moving Array
This example illustrates the nonzero Doppler shift exhibited by a stationary
target in the presence of array motion. In general, this nonzero shift
complicates the detection of slow-moving targets because the motion-induced
Doppler shift and spread of the clutter returns obscure the Doppler shifts
of such targets.

The scenario in this example is identical to that of “Angle-Doppler Response of
a Stationary Target at a Stationary Array” on page 5-2, except that the ULA
is moving at a constant velocity. For convenience, the MATLAB code to set
up the objects is repeated. Notice that the InitialPosition and Velocity
properties of the htxplat object have changed. The InitialPosition
property value is set to simulate an airborne ULA. The motivation for
selecting the particular value of the Velocity property is explained in
“Applicability of DPCA Pulse Canceller” on page 5-9.

hant = phased.IsotropicAntennaElement...
('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = physconst('lightspeed')/4e9;
hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);
hwav = phased.RectangularWaveform('PulseWidth',2e-006,...

'PRF',5e3,'SampleRate',1e6,'NumPulses',1);

5-5

5 Space-Time Adaptive Processing (STAP)

hrad = phased.Radiator('Sensor',hula,...
'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hula,...
'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',4e9);

vy = (hula.ElementSpacing*hwav.PRF)/2;
htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

'Velocity',[0;vy;0]);
htgt = phased.RadarTarget('MeanRCS',1,'Model','nonfluctuating');
htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

'Velocity',[0;0;0]);
hspace = phased.FreeSpace('OperatingFrequency',4e9,...

'TwoWayPropagation',false,'SampleRate',1e6);
hrx = phased.ReceiverPreamp('NoiseFigure',0,...

'EnableInputPort',true,'SampleRate',1e6,'Gain',40);
htx = phased.Transmitter('PeakPower',1e4,...

'InUseOutputPort',true,'Gain',40);

Transmit ten rectangular pulses toward the target as the ULA is moving.
Then, collect the received echoes.

PRF = 5e3;
NumPulses = 10;
wav = step(hwav);
tgtloc = htgtplat.InitialPosition;
M = hwav.SampleRate*1/PRF;
N = hula.NumElements;
rxsig = zeros(M,N,NumPulses);
fasttime = unigrid(0,1/hwav.SampleRate,1/PRF,'[)');
rangebins = (physconst('lightspeed')*fasttime)/2;

for n = 1:NumPulses
% move transmitter
[txloc,~] = step(htxplat,1/PRF);
% get angle to target
[~,tgtang] = rangeangle(tgtloc,txloc);
% transmit pulse
[txsig,txstatus] = step(htx,wav);
% radiate pulse

5-6

Angle-Doppler Response

txsig = step(hrad,txsig,tgtang);
% propagate pulse to target
txsig = step(hspace,txsig,txloc,tgtloc);
% reflect pulse off stationary target
txsig = step(htgt,txsig);
% propagate pulse to array
txsig = step(hspace,txsig,tgtloc,txloc);
% collect pulse
rxsig(:,:,n) = step(hcol,txsig,tgtang);
% receive pulse
rxsig(:,:,n) = step(hrx,rxsig(:,:,n),~txstatus);

end

Calculate the target angles and range with respect to the ULA. Then,
calculate the Doppler shift induced by the motion of the phased array.

sp = radialspeed(tgtloc, htgtplat.Velocity, ...
txloc, htxplat.Velocity);

tgtdoppler = 2*speed2dop(sp,lambda);
tgtLocation = global2localcoord(tgtloc,'rs',txloc);
tgtazang = tgtLocation(1);
tgtelang = tgtLocation(2);
tgtrng = tgtLocation(3);

The two-way Doppler shift is approximately 1626 Hz. The azimuth angle is
45 degrees and is identical to the stationary ULA example.

Plot the angle-Doppler response.

tgtcell = val2ind(tgtrng,...
physconst('lightspeed')/(2*hwav.SampleRate));

snapshot = shiftdim(rxsig(tgtcell,:,:)); % Remove singleton dim
hadresp = phased.AngleDopplerResponse('SensorArray',hula,...

'OperatingFrequency',4e9, ...
'PropagationSpeed',physconst('lightspeed'),...
'PRF',PRF, 'ElevationAngle',tgtelang);

plotResponse(hadresp,snapshot);
text(tgtazang,tgtdoppler,'+Target');

5-7

5 Space-Time Adaptive Processing (STAP)

The angle-Doppler response shows the greatest response at 45 degrees
azimuth and the expected Doppler shift.

5-8

Displaced Phase Center Antenna (DPCA) Pulse Canceller

Displaced Phase Center Antenna (DPCA) Pulse Canceller

In this section...

“When to Use the DPCA Pulse Canceller” on page 5-9

“Example: DPCA Pulse Canceller for Clutter Rejection” on page 5-9

When to Use the DPCA Pulse Canceller
In a moving target indication (MTI) radar, clutter returns can make it more
difficult to detect and track the targets of interest. A rudimentary way to
mitigate the effects of clutter returns in such a system is to implement a
displaced phase center antenna (DPCA) pulse canceller on the slow-time data.

You can implement a DPCA pulse canceller with phased.DPCACanceller.
This implementation assumes that the entire array is used on transmit. On
receive, the array is divided into two subarrays. The phase centers of the
subarrays are separated by twice the distance the platform moves in one
pulse repetition interval.

Applicability of DPCA Pulse Canceller
The DPCA pulse canceller is applicable when both these conditions are true:

• Clutter is stationary across pulses.

• The motion satisfies

vT d / 2 (5-1)

where:

- v indicates the speed of the platform

- T represents the pulse repetition interval

- d indicates the inter-element spacing of the array

Example: DPCA Pulse Canceller for Clutter Rejection
This example implements a DPCA pulse canceller for clutter rejection.
Assume you have an airborne radar platform modeled by a six-element ULA

5-9

5 Space-Time Adaptive Processing (STAP)

operating at 4 GHz. The array elements are spaced at one-half the wavelength
of the 4 GHz carrier frequency. The radar emits ten rectangular pulses two
microseconds in duration with a PRF of 5 kHz. The platform moves along the
array axis with a speed equal to one-half the product of the element spacing
and the PRF. As a result, the condition in Equation 5-1 applies. The target
has a nonfluctuating RCS of 1 square meter and moves with a constant
velocity vector of [15;15;0]. The following MATLAB code constructs the
required System objects to simulate the signal received by the ULA.

PRF = 5e3;

fc = 4e9; fs = 1e6;

c = physconst('lightspeed');

hant = phased.IsotropicAntennaElement...

('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = c/fc;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth',2e-6,...

'PRF',PRF,'SampleRate',fs,'NumPulses',1);

hrad = phased.Radiator('Sensor',hula,...

'PropagationSpeed',c,...

'OperatingFrequency',fc);

hcol = phased.Collector('Sensor',hula,...

'PropagationSpeed',c,...

'OperatingFrequency',fc);

vy = (hula.ElementSpacing * PRF)/2;

htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

'Velocity',[0;vy;0]);

hclutter = phased.ConstantGammaClutter('Sensor',hula,...

'PropagationSpeed',hrad.PropagationSpeed,...

'OperatingFrequency',hrad.OperatingFrequency,...

'SampleRate',fs,...

'TransmitSignalInputPort',true,...

'PRF',PRF,...

'Gamma',surfacegamma('woods',hrad.OperatingFrequency),...

'EarthModel','Flat',...

'BroadsideDepressionAngle',0,...

'MaximumRange',hrad.PropagationSpeed/(2*PRF),...

'PlatformHeight',htxplat.InitialPosition(3),...

'PlatformSpeed',norm(htxplat.Velocity),...

'PlatformDirection',[90;0]);

5-10

Displaced Phase Center Antenna (DPCA) Pulse Canceller

htgt = phased.RadarTarget('MeanRCS',1,...

'Model','Nonfluctuating','OperatingFrequency',fc);

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

'Velocity',[15;15;0]);

hspace = phased.FreeSpace('OperatingFrequency',fc,...

'TwoWayPropagation',false,'SampleRate',fs);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

'EnableInputPort',true,'SampleRate',fs,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to and from the target, and collect the
responses at the array. Also, compute clutter echoes using the constant
gamma model with a gamma value corresponding to wooded terrain.

NumPulses = 10;

wav = step(hwav);

M = fs/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

csig = zeros(M,N,NumPulses);

fasttime = unigrid(0,1/fs,1/PRF,'[)');

rangebins = (c * fasttime)/2;

hclutter.SeedSource = 'Property';

hclutter.Seed = 5;

for n = 1:NumPulses

[txloc,~] = step(htxplat,1/PRF); % move transmitter

[tgtloc,~] = step(htgtplat,1/PRF); % move target

[~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target

[txsig1,txstatus] = step(htx,wav); % transmit pulse

csig(:,:,n) = step(hclutter,txsig1(abs(txsig1)>0)); % collect clutter

txsig = step(hrad,txsig1,tgtang); % radiate pulse

txsig = step(hspace,txsig,txloc,tgtloc); % propagate to target

txsig = step(htgt,txsig); % reflect off target

txsig = step(hspace,txsig,tgtloc,txloc); % propagate to array

rxsig(:,:,n) = step(hcol,txsig,tgtang); % collect pulse

rxsig(:,:,n) = step(hrx,rxsig(:,:,n) + csig(:,:,n),...

~txstatus); % receive pulse plus clutter return

end

5-11

5 Space-Time Adaptive Processing (STAP)

Determine the target’s range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc, htgtplat.Velocity, ...

txloc, htxplat.Velocity);

tgtdoppler = 2*speed2dop(sp,lambda);

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

tgtcell = val2ind(tgtrng,c/(2 * fs));

Use noncoherent pulse integration to visualize the signal received by the
ULA for the first of the ten pulses. Mark the target’s range gate with a
vertical dashed line.

firstpulse = pulsint(rxsig(:,:,1),'noncoherent');

figure;

plot([tgtrng tgtrng],[0 0.1],'-.',rangebins,firstpulse);

title('Noncoherent Integration of 1st Pulse at the ULA');

xlabel('Range (m)'); ylabel('Magnitude');

The large-magnitude clutter returns obscure the presence of the target. Apply
the DPCA pulse canceller to reject the clutter.

hstap = phased.DPCACanceller('SensorArray',hula,'PRF',PRF,...

'PropagationSpeed',c,...

'OperatingFrequency',fc,...

'Direction',[0;0],'Doppler',tgtdoppler,...

5-12

Displaced Phase Center Antenna (DPCA) Pulse Canceller

'WeightsOutputPort',true);

[y,w] = step(hstap,rxsig,tgtcell);

Plot the result of applying the DPCA pulse canceller. Mark the target range
gate with a vertical dashed line.

figure;

plot([tgtrng,tgtrng],[0 3.5e-5],'-.',rangebins,abs(y));

title('DPCA Canceller Output');

xlabel('Range (m)'), ylabel('Magnitude');

The DPCA pulse canceller has significantly rejected the clutter. As a result,
the target is visible at the expected range gate.

5-13

5 Space-Time Adaptive Processing (STAP)

Adaptive Displaced Phase Center Antenna (ADPCA) Pulse
Canceller

In this section...

“When to Use the Adaptive DPCA Pulse Canceller” on page 5-14

“Example: Adaptive DPCA Pulse Canceller” on page 5-14

When to Use the Adaptive DPCA Pulse Canceller
Consider an airborne radar system that needs to suppress clutter returns and
possibly jammer interference. Under any of the following conditions, you
might choose an adaptive DPCA (ADPCA) pulse canceller for suppressing
these effects.

• Jamming and other interference effects are substantial. The DPCA pulse
canceller is susceptible to interference because the DPCA pulse canceller
does not use the received data.

• The sample matrix inversion (SMI) algorithm is inapplicable because of
computational expense or a rapidly changing environment.

The phased.ADPCAPulseCanceller object implements an ADPCA pulse
canceller. This pulse canceller uses the data received from two consecutive
pulses to estimate the space-time interference covariance matrix. In
particular, the object lets you specify:

• The number of training cells. The algorithm uses training cells to estimate
the interference. In general, a larger number of training cells leads to a
better estimate of interference.

• The number of guard cells close to the target cells. The algorithm
recognizes guard cells to prevent target returns from contaminating the
estimate of the interference.

Example: Adaptive DPCA Pulse Canceller
This example implements an adaptive DPCA pulse canceller for clutter and
interference rejection. The scenario is identical to the one in “Example: DPCA
Pulse Canceller for Clutter Rejection” on page 5-9 except that a stationary

5-14

Adaptive Displaced Phase Center Antenna (ADPCA) Pulse Canceller

broadband barrage jammer is added at [3.5e3; 1e3; 0]. The jammer has
an effective radiated power of 1 kw.

To repeat the scenario for convenience, the airborne radar platform is a
six-element ULA operating at 4 GHz. The array elements are spaced at
one-half the wavelength of the 4 GHz carrier frequency. The radar emits ten
rectangular pulses two μs in duration with a PRF of 5 kHz. The platform is
moving along the array axis with a speed equal to one-half the product of
the element spacing and the PRF. As a result, the condition in Equation 5-1
applies. The target has a nonfluctuating RCS of 1 square meter and is moving
with a constant velocity vector of [15;15;0].

The following commands construct the required System objects to simulate
the scenario.

PRF = 5e3;

fc = 4e9; fs = 1e6;

c = physconst('lightspeed');

hant = phased.IsotropicAntennaElement...

('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = c/fc;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth', 2e-6,...

'PRF',PRF,'SampleRate',fs,'NumPulses',1);

hrad = phased.Radiator('Sensor',hula,...

'PropagationSpeed',c,...

'OperatingFrequency',fc);

hcol = phased.Collector('Sensor',hula,...

'PropagationSpeed',c,...

'OperatingFrequency',fc);

vy = (hula.ElementSpacing * PRF)/2;

htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

'Velocity',[0;vy;0]);

hclutter = phased.ConstantGammaClutter('Sensor',hula,...

'PropagationSpeed',hrad.PropagationSpeed,...

'OperatingFrequency',hrad.OperatingFrequency,...

'SampleRate',fs,...

'TransmitSignalInputPort',true,...

'PRF',PRF,...

'Gamma',surfacegamma('woods',hrad.OperatingFrequency),...

5-15

5 Space-Time Adaptive Processing (STAP)

'EarthModel','Flat',...

'BroadsideDepressionAngle',0,...

'MaximumRange',hrad.PropagationSpeed/(2*PRF),...

'PlatformHeight',htxplat.InitialPosition(3),...

'PlatformSpeed',norm(htxplat.Velocity),...

'PlatformDirection',[90;0]);

htgt = phased.RadarTarget('MeanRCS',1,...

'Model','Nonfluctuating','OperatingFrequency',fc);

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

'Velocity',[15;15;0]);

hjammer = phased.BarrageJammer('ERP',1e3,'SamplesPerFrame',200);

hjammerplat = phased.Platform(...

'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);

hspace = phased.FreeSpace('OperatingFrequency',fc,...

'TwoWayPropagation',false,'SampleRate',fs);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

'EnableInputPort',true,'SampleRate',fs,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to and from the target and collect the
responses at the array. Compute clutter echoes using the constant gamma
model with a gamma value corresponding to wooded terrain. Also, propagate
the jamming signal from the jammer location to the airborne ULA.

NumPulses = 10;

wav = step(hwav);

M = fs/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

csig = zeros(M,N,NumPulses);

jsig = zeros(M,N,NumPulses);

fasttime = unigrid(0,1/fs,1/PRF,'[)');

rangebins = (c * fasttime)/2;

hclutter.SeedSource = 'Property';

hclutter.Seed = 40543;

hjammer.SeedSource = 'Property';

hjammer.Seed = 96703;

hrx.SeedSource = 'Property';

hrx.Seed = 56113;

5-16

Adaptive Displaced Phase Center Antenna (ADPCA) Pulse Canceller

jamloc = hjammerplat.InitialPosition;

for n = 1:NumPulses

[txloc,~] = step(htxplat,1/PRF); % move transmitter

[tgtloc,~] = step(htgtplat,1/PRF); % move target

[~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target

[txsig,txstatus] = step(htx,wav); % transmit pulse

csig(:,:,n) = step(hclutter,txsig(abs(txsig)>0)); % collect clutter

txsig = step(hrad,txsig,tgtang); % radiate pulse

txsig = step(hspace,txsig,txloc,tgtloc); % propagate pulse to target

txsig = step(htgt,txsig); % reflect off target

txsig = step(hspace,txsig,tgtloc,txloc); % propagate to array

rxsig(:,:,n) = step(hcol,txsig,tgtang); % collect pulse

jamsig = step(hjammer); % generate jammer signal

[~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter

jamsig = step(hspace,jamsig,jamloc,txloc); % propagate jammer signal

jsig(:,:,n) = step(hcol,jamsig,jamang); % collect jammer signal

rxsig(:,:,n) = step(hrx,...

rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...

~txstatus); % receive pulse plus clutter return plus jammer signal

end

Determine the target’s range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc, htgtplat.Velocity, ...

txloc, htxplat.Velocity);

tgtdoppler = 2*speed2dop(sp,lambda);

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

tgtcell = val2ind(tgtrng,c/(2 * fs));

Process the array responses using the nonadaptive DPCA pulse canceller. To
do so, construct the DPCA object, and apply it to the received signals.

hstap = phased.DPCACanceller('SensorArray',hula,'PRF',PRF,...

'PropagationSpeed',c,...

5-17

5 Space-Time Adaptive Processing (STAP)

'OperatingFrequency',fc,...

'Direction',[0;0],'Doppler',tgtdoppler,...

'WeightsOutputPort',true);

[y,w] = step(hstap,rxsig,tgtcell);

Plot the DPCA result with the target range marked by a vertical dashed line.
Notice how the presence of the interference signal has obscured the target.

figure;

plot([tgtrng,tgtrng],[0 7e-2],'-.',rangebins,abs(y));

axis tight;

xlabel('Range (m)'), ylabel('Magnitude');

title('DPCA Canceller Output with Jamming')

Apply the adaptive DPCA pulse canceller. Use 100 training cells and 4 guard
cells, two on each side of the target range gate.

hstap = phased.ADPCACanceller('SensorArray',hula,'PRF',PRF,...

'PropagationSpeed',c,...

'OperatingFrequency',fc,...

'Direction',[0;0],'Doppler',tgtdoppler,...

'WeightsOutputPort',true,'NumGuardCells',4,...

'NumTrainingCells',100);

[y_adpca,w_adpca] = step(hstap,rxsig,tgtcell);

Plot the result with the target range marked by a vertical dashed line. Notice
how the adaptive DPCA pulse canceller enables you to detect the target in
the presence of the jamming signal.

5-18

Adaptive Displaced Phase Center Antenna (ADPCA) Pulse Canceller

figure;

plot([tgtrng,tgtrng],[0 4e-7],'-.',rangebins,abs(y_adpca));

axis tight;

title('ADPCA Canceller Output with Jamming');

xlabel('Range (m)'), ylabel('Magnitude');

Examine the angle-Doppler response. Notice the presence of the clutter ridge
in the angle-Doppler plane and the null at the jammer’s broadside angle for
all Doppler frequencies.

hadresp = phased.AngleDopplerResponse('SensorArray',hula,...

'OperatingFrequency',fc,...

'PropagationSpeed',c,...

'PRF',PRF,'ElevationAngle',tgtelang);

figure;

plotResponse(hadresp,w_adpca);

title('Angle-Doppler Response with ADPCA Pulse Cancellation');

text(az2broadside(jamang(1),jamang(2)) + 10,...

0,'\leftarrow Interference Null')

5-19

5 Space-Time Adaptive Processing (STAP)

5-20

Sample Matrix Inversion (SMI) Beamformer

Sample Matrix Inversion (SMI) Beamformer

In this section...

“When to Use the SMI Beamformer” on page 5-21

“Example: Sample Matrix Inversion (SMI) Beamformer” on page 5-21

When to Use the SMI Beamformer
In situations where an airborne radar system needs to suppress clutter
returns and jammer interference, the system needs a more sophisticated
algorithm than a DPCA pulse canceller can provide. One option is the sample
matrix inversion (SMI) algorithm. SMI is the optimum STAP algorithm and
is often used as a baseline for comparison with other algorithms.

The SMI algorithm is computationally expensive and assumes a stationary
environment across many pulses. If you need to suppress clutter returns
and jammer interference with less computation, or in a rapidly changing
environment, consider using an ADPCA pulse canceller instead.

The phased.STAPSMIBeamformer object implements the SMI algorithm. In
particular, the object lets you specify:

• The number of training cells. The algorithm uses training cells to estimate
the interference. In general, a larger number of training cells leads to a
better estimate of interference.

• The number of guard cells close to the target cells. The algorithm
recognizes guard cells to prevent target returns from contaminating the
estimate of the interference.

Example: Sample Matrix Inversion (SMI) Beamformer
This scenario is identical to the one presented in “Example: Adaptive DPCA
Pulse Canceller” on page 5-14. You can run the code for both examples to
compare the ADPCA pulse canceller with the SMI beamformer. The example
details and code are repeated for convenience.

To repeat the scenario for convenience, the airborne radar platform is a
six-element ULA operating at 4 GHz. The array elements are spaced at

5-21

5 Space-Time Adaptive Processing (STAP)

one-half the wavelength of the 4 GHz carrier frequency. The radar emits ten
rectangular pulses two μs in duration with a PRF of 5 kHz. The platform is
moving along the array axis with a speed equal to one-half the product of
the element spacing and the PRF. The target has a nonfluctuating RCS of 1
square meter and is moving with a constant velocity vector of [15;15;0]. A
stationary broadband barrage jammer is located at [3.5e3; 1e3; 0]. The
jammer has an effective radiated power of 1 kw.

The following commands construct the required System objects to simulate
the scenario.

PRF = 5e3;

fc = 4e9; fs = 1e6;

c = physconst('lightspeed');

hant = phased.IsotropicAntennaElement...

('FrequencyRange',[8e8 5e9],'BackBaffled',true);

lambda = c/fc;

hula = phased.ULA(6,'Element',hant,'ElementSpacing',lambda/2);

hwav = phased.RectangularWaveform('PulseWidth', 2e-6,...

'PRF',PRF,'SampleRate',fs,'NumPulses',1);

hrad = phased.Radiator('Sensor',hula,...

'PropagationSpeed',c,...

'OperatingFrequency',fc);

hcol = phased.Collector('Sensor',hula,...

'PropagationSpeed',c,...

'OperatingFrequency',fc);

vy = (hula.ElementSpacing * PRF)/2;

htxplat = phased.Platform('InitialPosition',[0;0;3e3],...

'Velocity',[0;vy;0]);

hclutter = phased.ConstantGammaClutter('Sensor',hula,...

'PropagationSpeed',hrad.PropagationSpeed,...

'OperatingFrequency',hrad.OperatingFrequency,...

'SampleRate',fs,...

'TransmitSignalInputPort',true,...

'PRF',PRF,...

'Gamma',surfacegamma('woods',hrad.OperatingFrequency),...

'EarthModel','Flat',...

'BroadsideDepressionAngle',0,...

'MaximumRange',hrad.PropagationSpeed/(2*PRF),...

'PlatformHeight',htxplat.InitialPosition(3),...

5-22

Sample Matrix Inversion (SMI) Beamformer

'PlatformSpeed',norm(htxplat.Velocity),...

'PlatformDirection',[90;0]);

htgt = phased.RadarTarget('MeanRCS',1,...

'Model','Nonfluctuating','OperatingFrequency',fc);

htgtplat = phased.Platform('InitialPosition',[5e3; 5e3; 0],...

'Velocity',[15;15;0]);

hjammer = phased.BarrageJammer('ERP',1e3,'SamplesPerFrame',200);

hjammerplat = phased.Platform(...

'InitialPosition',[3.5e3; 1e3; 0],'Velocity',[0;0;0]);

hspace = phased.FreeSpace('OperatingFrequency',fc,...

'TwoWayPropagation',false,'SampleRate',fs);

hrx = phased.ReceiverPreamp('NoiseFigure',0,...

'EnableInputPort',true,'SampleRate',fs,'Gain',40);

htx = phased.Transmitter('PeakPower',1e4,...

'InUseOutputPort',true,'Gain',40);

Propagate the ten rectangular pulses to and from the target and collect the
responses at the array. Compute clutter echoes using the constant gamma
model with a gamma value corresponding to wooded terrain. Also, propagate
the jamming signal from the jammer location to the airborne ULA.

NumPulses = 10;

wav = step(hwav);

M = fs/PRF;

N = hula.NumElements;

rxsig = zeros(M,N,NumPulses);

csig = zeros(M,N,NumPulses);

jsig = zeros(M,N,NumPulses);

fasttime = unigrid(0,1/fs,1/PRF,'[)');

rangebins = (c * fasttime)/2;

hclutter.SeedSource = 'Property';

hclutter.Seed = 40543;

hjammer.SeedSource = 'Property';

hjammer.Seed = 96703;

hrx.SeedSource = 'Property';

hrx.Seed = 56113;

jamloc = hjammerplat.InitialPosition;

for n = 1:NumPulses

[txloc,~] = step(htxplat,1/PRF); % move transmitter

5-23

5 Space-Time Adaptive Processing (STAP)

[tgtloc,~] = step(htgtplat,1/PRF); % move target

[~,tgtang] = rangeangle(tgtloc,txloc); % get angle to target

[txsig,txstatus] = step(htx,wav); % transmit pulse

csig(:,:,n) = step(hclutter,txsig(abs(txsig)>0)); % collect clutter

txsig = step(hrad,txsig,tgtang); % radiate pulse

txsig = step(hspace,txsig,txloc,tgtloc); % propagate pulse to target

txsig = step(htgt,txsig); % reflect off target

txsig = step(hspace,txsig,tgtloc,txloc); % propagate to array

rxsig(:,:,n) = step(hcol,txsig,tgtang); % collect pulse

jamsig = step(hjammer); % generate jammer signal

[~,jamang] = rangeangle(jamloc,txloc); % angle from jammer to transmitter

jamsig = step(hspace,jamsig,jamloc,txloc); % propagate jammer signal

jsig(:,:,n) = step(hcol,jamsig,jamang); % collect jammer signal

rxsig(:,:,n) = step(hrx,...

rxsig(:,:,n) + csig(:,:,n) + jsig(:,:,n),...

~txstatus); % receive pulse plus clutter return plus jammer signal

end

Determine the target’s range, range gate, and two-way Doppler shift.

sp = radialspeed(tgtloc, htgtplat.Velocity, ...

txloc, htxplat.Velocity);

tgtdoppler = 2*speed2dop(sp,lambda);

tgtLocation = global2localcoord(tgtloc,'rs',txloc);

tgtazang = tgtLocation(1);

tgtelang = tgtLocation(2);

tgtrng = tgtLocation(3);

tgtcell = val2ind(tgtrng,c/(2 * fs));

Construct an SMI beamformer object. Use 100 training cells, 50 on each side
of the target range gate. Use four guard cells, two range gates in front of the
target cell and two range gates beyond the target cell. Obtain the beamformer
response and weights.

tgtang = [tgtazang; tgtelang];

hstap = phased.STAPSMIBeamformer('SensorArray',hula,...

'PRF',PRF,'PropagationSpeed',c,...

'OperatingFrequency',fc,...

5-24

Sample Matrix Inversion (SMI) Beamformer

'Direction',tgtang,'Doppler',tgtdoppler,...

'WeightsOutputPort',true,...

'NumGuardCells',4,'NumTrainingCells',100);

[y,weights] = step(hstap,rxsig,tgtcell);

Plot the resulting array output after beamforming.

figure;

plot([tgtrng,tgtrng],[0 5e-6],'-.',rangebins,abs(y));

axis tight;

title('SMI Beamformer Output');

xlabel('Range (meters)'); ylabel('Magnitude');

Plot the angle-Doppler response with the beamforming weights.

% Construct an angle-Doppler response object and apply the

% beamforming weights

hresp = phased.AngleDopplerResponse('SensorArray',hula,...

'OperatingFrequency',4e9,'PRF',PRF,...

'PropagationSpeed',physconst('lightspeed'));

figure;

plotResponse(hresp,weights);

title('Angle-Doppler Response with SMI Beamforming Weights');

5-25

5 Space-Time Adaptive Processing (STAP)

5-26

6

Detection

• “Hypothesis Testing” on page 6-2

• “Receiver Operating Characteristic (ROC) Curves” on page 6-9

• “Matched Filtering” on page 6-14

• “Constant False-Alarm Rate (CFAR) Detectors” on page 6-20

6 Detection

Hypothesis Testing

In this section...

“Neyman-Pearson Hypothesis Testing” on page 6-2

“Likelihood Ratio Tests” on page 6-3

Neyman-Pearson Hypothesis Testing
In phased-array applications, sometimes you need to decide between two
competing hypotheses about the state of nature. In such cases, you cannot
observe the state of nature directly must infer from data received by the
array. Because the data is affected by many factors in an unpredictable way,
you must make a decision based on statistics. To do so, you must formulate
a decision rule that chooses between the two hypotheses based on specified
criteria. There are three major optimality criteria used in formulating
hypothesis tests: the Bayes risk criterion, the minimax criterion, and the
Neyman-Pearson (NP) criterion. In phased array applications, such as radar
and sonar, the NP criterion is the most common.

A Neyman-Pearson framework characterizes the states of nature by
probability distributions. The hypothesis test determines which probability
distribution has generated the data you observe. In signal detection, the most
common formulation is that under the null hypothesis the observed data
consists of noise only. Under the alternative hypothesis, the data consists of
some deterministic signal plus noise. For example:

H x n n

H x n s n n
0

1

: [] []

: [] [] []



 




where ε[n] is a sequence of random variables drawn from some distribution
and s[n] is a known deterministic signal.

There are two important conditional probabilities in this scenario:

• The probability that you decide the data consists of signal+noise when only
noise is present. This situation is called a false alarm.

6-2

Hypothesis Testing

• The probability you decide the data consists of noise only when there is
actually a signal present. This situation is a called a miss. The complement
of the probability of a miss is the probability of detection, the probability
you decide there is a signal present when, in fact, a signal is present.

The NP criterion chooses a decision rule that maximizes the probability of
detection subject to the constraint that the false-alarm probability is at most
some specified number. The probability distributions under the null and
alternative hypotheses do not have disjoint support. Thus, the smaller the
maximum probability of false alarm, the smaller the probability of detection.

Likelihood Ratio Tests
Under the NP criterion, the optimal decision rule derives from a likelihood
ratio test (LRT). An LRT chooses between the null and alternative hypotheses
based on a ratio of conditional probabilities. Denote the probability that you
observe a given data vector y under the alternative as p(y|H1). Similarly,
denote the probability you observe a given data vector y under the null
hypothesis as p(y|H0). The NP detector forms the ratio of these probabilities
and decides between the two hypotheses based on a threshold λ. If the
likelihood ratio exceeds λ choose H1, if not choose H0. The LRT is given by:

L y
p y H
p y H H

H

()
(|)
(|)

 


1

0 0

1



where λ is determined by the following:

1 Let f(y|H0) denote the probability density under the null hypothesis.

2 Set λ equal to that value such that the integral of f(y|H0) from L(y)>λ to ∞
is equal to the desired false-alarm probability.

You can write this expression as:

P f y H dyFA y L y





{ : () }

(|)
 0

You can use npwgnthresh to determine the threshold for the detection of
deterministic signals in white Gaussian noise based on the NP criterion.

6-3

6 Detection

Assume that you collect N samples of a real-valued signal, which under the
null hypothesis is a sequence of uncorrelated, zero-mean, Gaussian random
variables with some variance, σ2. Under the alternative hypothesis, the
sequence is an unknown mean value plus white noise. You can summarize
this hypothesis test as:

H x n w n n N

H x n A w n n Na

0 0 1 2 1

0 1 2 1

: [] [] , , ,

: [] [] , , ,

   

    

where the w[n] are distributed as N(0,σ2) and A is a constant.

The preceding situation arises when processing samples, which may consist of
a reflected rectangular pulse waveform plus noise, or noise only.

Threshold for Real-Valued Signal in White Gaussian Noise

To determine the required signal-to-noise (SNR) in decibels for the NP
detector when the maximum tolerable false-alarm probability is 10–3, enter:

T = npwgnthresh(1e-3,1,'real')

This expression is equivalent to:

10*log10(2*erfcinv(2*1e-3)^2)

If you know the variance, you can determine the actual threshold
corresponding to the desired false-alarm probability. You can also determine
the probability of detection.

Assume the variance is 1. You can determine the threshold with the following
code.

threshold = sqrt(db2pow(T));
% The false-alarm probability is:
0.5*erfc(threshold/sqrt(2))

The following simulation empirically verifies that the threshold results in the
desired false-alarm probability under the null hypothesis. Reset the random
number generator to produce repeatable results. Generate 10,000 samples of

6-4

Hypothesis Testing

N(0,1) random variables. Set the maximum false-alarm probability to 1e-3,
and determine how many samples exceed the corresponding threshold.

rng default
variance = 1;
N = 1e4;
x = sqrt(variance)*randn(N,1);
Pfa = 1e-3;
T = npwgnthresh(Pfa,1,'real');
threshold = sqrt(variance*db2pow(T));
falsealarm = sum(x>threshold)/length(x)
plot(x)
line(1:length(x),threshold,'color',[1 0 0]);
xlabel('Sample'); ylabel('Value');

The red horizontal line in the plot is the threshold. You can see that very few
sample values exceed the threshold. This result is expected because of the
small false-alarm probability.

In this scenario, the probability of detection is:

Pd = 0.5*erfc(erfcinv(2*1e-6)-(1/sqrt(2)*sqrt(db2pow(T))))

In the next example, assume that you employ pulse integration with
real-valued pulses. Each sample is the sum of two samples, one from each

6-5

6 Detection

pulse. Under the null hypothesis, each sample is a N(0,σ2) random variable.
The sum of these independent and identically distributed Gaussian N(0,σ2)
random variables is distributed as N(0,2σ2).

If you use the sum of the two real-valued white noise Gaussian samples as a
sufficient statistic, the SNR threshold for a false-alarm probability of 1e-3 is:

T = npwgnthresh(1e-3,2,'real')
% equivalent to
% 10*log10(4*erfcinv(2*1e-3)^2)

Repeat the previous simulation for the two-pulse case.

rng default
variance = 1;
N = 1e4;
Pfa = 1e-3;
puls1 = sqrt(variance)*randn(N,1);
puls2 = sqrt(variance)*randn(N,1);
intpuls = sum([puls1 puls2],2);
T = npwgnthresh(Pfa,2,'real');
threshold = sqrt(variance*db2pow(T));
falsealarm = sum(intpuls>threshold)/length(intpuls);
figure;
plot(intpuls)
line(1:length(intpuls),threshold,'color',[1 0 0]);
xlabel('Sample'); ylabel('Value');
title('Two Pulse Simulation (real-valued)');

6-6

Hypothesis Testing

Threshold for Complex-Valued Signals in Complex White Gaussian
Noise

Most phased array receivers use in-phase and quadrature channels. In this
case, the data are complex valued. Assume that you have a data vector, which
consists of N samples of complex-valued, white Gaussian noise under the null
hypothesis, or a complex-valued constant plus complex white Gaussian noise
under the alternative. You can summarize the hypothesis test as:

H x n w n n N

H x n Ae w n n Nj
0

1

0 1 2 1

0 1 2 1

: [] [] , , ,

: [] [] , , ,

   

    

The constant under the alternative hypothesis is complex valued and as a
result has both magnitude and phase information When phase information is
available, this approach is referred to as coherent detection.

Assume you want the false-alarm probability to be at most 1e-3 in a coherent
detection scheme with one sample.

T = npwgnthresh(1e-3,1,'coherent')

The sufficient statistic in the complex-valued case is the real part of received
sample. You can test that this threshold empirically results in the correct
false-alarm rate with the following code:

6-7

6 Detection

rng default
variance = 1;
N = 1e4;
Pfa = 1e-3;
x = sqrt(variance/2)*(randn(N,1)+1j*randn(N,1));
threshold = sqrt(variance*db2pow(T));
falsealarm = sum(real(x)>threshold)/length(x)

You can also implement a noncoherent detector, which uses only the
magnitudes (moduli) of the complex-valued baseband samples.

6-8

Receiver Operating Characteristic (ROC) Curves

Receiver Operating Characteristic (ROC) Curves
ROC curves present graphical summaries of a detector’s performance. You
can generate ROC curves using the functions rocpfa and rocsnr.

If you are interested in examining the effect of varying the false-alarm
probability on the probability of detection for a fixed SNR, you can use rocsnr.

For example, the threshold SNR for the Neyman-Pearson detector of a single
sample in real-valued Gaussian noise is approximately 13.5 dB. Use rocsnr
to demonstrate how the probability of detection varies as a function of the
false-alarm rate at that SNR.

T = npwgnthresh(1e-6,1,'real');
rocsnr(T,'SignalType','real')

The ROC curve enables you to easily read off the probability of detection
for a given false-alarm rate.

You can use rocsnr to examine detector performance for different received
signal types at a fixed SNR.

SNR = 13.54;
[Pd_real,Pfa_real] = rocsnr(SNR,'SignalType','real',...

'MinPfa',1e-8);

6-9

6 Detection

[Pd_coh,Pfa_coh] = rocsnr(SNR,...
'SignalType','NonfluctuatingCoherent',...
'MinPfa',1e-8);

[Pd_noncoh,Pfa_noncoh] = rocsnr(SNR,'SignalType',...
'NonfluctuatingNoncoherent','MinPfa',1e-8);

figure;
semilogx(Pfa_real,Pd_real); hold on; grid on;
semilogx(Pfa_coh,Pd_coh,'r');
semilogx(Pfa_noncoh,Pd_noncoh,'k');
xlabel('False-Alarm Probability');
ylabel('Probability of Detection');
legend('Real','Coherent','Noncoherent','location','southeast');
title('ROC Curve Comparison for Nonfluctuating RCS Target');

The ROC curves clearly demonstrate the superior probability of detection
performance for coherent and noncoherent detectors over the real-valued case.

The rocsnr function accepts an SNR vector input enabling you to quickly
examine a number of ROC curves.

SNRs = (6:2:12);
figure;
rocsnr(SNRs,'SignalType','NonfluctuatingNoncoherent');

6-10

Receiver Operating Characteristic (ROC) Curves

The graph shows that—as the SNR increases—the supports of the probability
distributions under the null and alternative hypotheses become more disjoint.
Therefore, for a given false-alarm probability, the probability of detection
increases.

You can examine the probability of detection as a function of SNR for a fixed
false-alarm probability with rocpfa.

To obtain ROC curves for a Swerling I target model at false-alarm
probabilities of [1e-6 1e-4 1e-2 1e-1], enter:

Pfa = [1e-6 1e-4 1e-2 1e-1];
figure;
rocpfa(Pfa,'SignalType','Swerling1');

6-11

6 Detection

Use rocpfa to examine the effect of SNR on the probability of detection for a
detector using noncoherent integration with a false-alarm probability of 1e-4.
Assume the target has a nonfluctuating RCS and that you are integrating
over 5 pulses.

[Pd,SNR] = rocpfa(1e-4,...
'SignalType','NonfluctuatingNoncoherent',...
'NumPulses',5);

figure;
plot(SNR,Pd); xlabel('SNR (dB)');
ylabel('Probability of Detection'); grid on;
title('Nonfluctuating Noncoherent Detector (5 Pulses)');

6-12

Receiver Operating Characteristic (ROC) Curves

See Detector Performance Analysis using ROC Curves for a demo.

6-13

6 Detection

Matched Filtering
You can see from the results in “Receiver Operating Characteristic (ROC)
Curves” on page 6-9 that the probability of detection increases with increasing
SNR. For a deterministic signal in white Gaussian noise, you can maximize
the SNR at the receiver by using a filter matched to the signal. The matched
filter is a time-reversed and conjugated version of the signal. The matched
filter is shifted to be causal. Use phased.MatchedFilter to implement a
matched filter.

When you use phased.MatchedFilter, you can customize characteristics of
the matched filter such as the matched filter coefficients and window for
spectrum weighting. If you apply spectrum weighting, you can specify the
coverage region and coefficient sample rate; Taylor, Chebyshev, and Kaiser
windows have additional properties you can specify.

Matched Filtering of Linear FM Waveform

Create a linear FM waveform with a duration of 0.1 milliseconds, a sweep
bandwidth of 100 kHz, and a pulse repetition frequency of 5 kHz. Add noise
to the linear FM pulse and filter the noisy signal using the matched filter.
Spectrum weighting is often used with linear FM waveform to reduce the
sidelobes in the time domain. This example compares the results using a
matched filter with and without spectrum weighting.

% Specify the waveform.
hwav = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3,...

'SampleRate',1e6,'OutputFormat','Pulses','NumPulses',1,...
'SweepBandwidth',1e5);

w = getMatchedFilter(hwav);

% Create a matched filter with no spectrum weighting, and a
% matched filter that uses a Taylor window for spectrum
% weighting.
hmf = phased.MatchedFilter('Coefficients',w);
hmf_taylor = phased.MatchedFilter('Coefficients',w,...

'SpectrumWindow','Taylor');

% Create the signal and add noise.
sig = step(hwav);

6-14

Matched Filtering

rng(17)
x = sig+0.5*(randn(length(sig),1)+1j*randn(length(sig),1));

% Filter the noisy signal separately with each of the filters.
y = step(hmf,x);
y_taylor = step(hmf_taylor,x);

% Plot the real parts of the waveform and noisy signal.
t = linspace(0,numel(sig)/hwav.SampleRate,...

hwav.SampleRate/hwav.PRF);
subplot(2,1,1);
plot(t,real(sig)); title('Input Signal');
xlim([0 max(t)]); grid on
ylabel('Amplitude');
subplot(2,1,2);
plot(t,real(x)); title('Input Signal + Noise');
xlim([0 max(t)]); grid on
xlabel('Seconds'); ylabel('Amplitude');

% Plot the magnitudes of the two matched filter outputs.
figure;
plot(t,abs(y),'b--');
title('Matched Filter Output');
xlim([0 max(t)]); grid on
hold on;
plot(t,abs(y_taylor),'r-');
ylabel('Magnitude'); xlabel('Seconds');
legend('No Spectrum Weighting','Taylor Window');
hold off;

6-15

6 Detection

Matched Filtering to Improve SNR for Target Detection

The following example demonstrates the SNR improvement obtained after
matched filtering.

Place an isotropic antenna element at the global origin [0;0;0]. Then, place
a target with a nonfluctuating RCS of one square meter at [5000;5000;10],
which is approximately 7 km from the transmitter. Set the operating
(carrier) frequency to 10 GHz. To simulate a monostatic radar, set the

6-16

Matched Filtering

InUseOutputPort property on the transmitter to true. Calculate the range
and angle from the transmitter to the target.

hsensor = phased.IsotropicAntennaElement(...
'FrequencyRange',[5e9 15e9]);

htx = phased.Transmitter('Gain',20,'InUseOutputPort',true);
htgt = phased.RadarTarget('Model','Nonfluctuating',...

'MeanRCS',1,'OperatingFrequency',10e9);
htgtloc = phased.Platform('InitialPosition',[5000;5000;10]);
htxloc = phased.Platform('InitialPosition',[0;0;0]);
[tgtrng,tgtang] = rangeangle(htgtloc.InitialPosition,...

htxloc.InitialPosition);

Create a rectangular pulse waveform 25 microseconds in duration with a PRF
of 10 kHz. Use a single pulse for this example. Determine the maximum
unambiguous range for the given PRF. Use radareqpow to determine the
peak power required to detect a target. This target has an RCS of 1 square
meter at the maximum unambiguous range for the transmitter operating
frequency and gain. The SNR is based on a desired false-alarm rate of 1e-6
for a noncoherent detector.

hwav = phased.RectangularWaveform('PulseWidth',25e-6,...
'OutputFormat','Pulses','PRF',1e4,'NumPulses',1);

maxrange = physconst('LightSpeed')/(2*hwav.PRF);
SNR = npwgnthresh(1e-6,1,'noncoherent');
Pt = radareqpow(physconst('LightSpeed')/10e9,maxrange,SNR,...

hwav.PulseWidth,'rcs',htgt.MeanRCS,'gain',htx.Gain);

Set the peak transmit power.

htx.PeakPower = Pt;

Create radiator and collector objects to operate at 10 GHz. Create a free space
path for the propagation of the pulse to and from the target. Then, create an
ideal receiver and a matched filter for the rectangular waveform.

hrad = phased.Radiator(...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',10e9,'Sensor',hsensor);

hspace = phased.FreeSpace(...
'PropagationSpeed',physconst('LightSpeed'),...

6-17

6 Detection

'OperatingFrequency',10e9,'TwoWayPropagation',false);
hcol = phased.Collector(...

'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',10e9,'Sensor',hsensor);

hrec = phased.ReceiverPreamp('NoiseFigure',0,...
'EnableInputPort',true,'SeedSource','Property','Seed',2e3);

hmf = phased.MatchedFilter(...
'Coefficients',getMatchedFilter(hwav),...
'GainOutputPort',true);

After you create all the objects that define your model, you can propagate the
pulse to and from the target. Collect the echo at the receiver, and implement
the matched filter to improve the SNR.

% Generate waveform
wf = step(hwav);
% Transmit waveform
[wf,txstatus] = step(htx,wf);
% Radiate pulse toward the target
wf = step(hrad,wf,tgtang);
% Propagate pulse toward the target
wf = step(hspace,wf,htxloc.InitialPosition,...

htgtloc.InitialPosition);
% Reflect it off the target
wf = step(htgt,wf);
% Propagate the pulse back to transmitter
wf = step(hspace,wf,htgtloc.InitialPosition,...

htxloc.InitialPosition);
% Collect the echo
wf = step(hcol,wf,tgtang);

% Receive target echo
rx_puls = step(hrec, wf,~txstatus);
[mf_puls,mfgain] = step(hmf,rx_puls);
% Get group delay of matched filter
Gd = length(hmf.Coefficients)-1;
% The group delay is constant
% Shift the matched filter output
mf_puls=[mf_puls(Gd+1:end); mf_puls(1:Gd)];
subplot(2,1,1);

6-18

Matched Filtering

t = unigrid(0,1e-6,1e-4,'[)');
rangegates = physconst('lightspeed').*t;
rangegates = rangegates/2;
plot(rangegates,abs(rx_puls)); title('Received Pulse');
ylabel('Amplitude'); hold on;
plot([tgtrng, tgtrng], [0 max(abs(rx_puls))],'r');
subplot(2,1,2)
plot(rangegates,abs(mf_puls)); title('With Matched Filtering');
xlabel('Meters'); ylabel('Amplitude'); hold on;
plot([tgtrng, tgtrng], [0 max(abs(mf_puls))],'r');

6-19

6 Detection

Constant False-Alarm Rate (CFAR) Detectors

In this section...

“Reasons for Using CFAR Detectors” on page 6-20

“Cell-Averaging CFAR Detector” on page 6-21

“Testing CFAR Detector Adaption to Noisy Input Data” on page 6-23

Reasons for Using CFAR Detectors
In the Neyman-Pearson framework, the probability of detection is maximized
subject to the constraint that the false-alarm probability does not exceed a
specified level. The false-alarm probability depends on the noise variance.
Therefore, to calculate the false-alarm probability, you must first estimate the
noise variance. If the noise variance changes, you must adjust the threshold
to maintain a constant false-alarm rate. Constant false-alarm rate detectors
implement adaptive procedures that enable you to update the threshold level
of your test when the power of the interference changes.

To motivate the need for an adaptive procedure, assume a simple binary
hypothesis test where you must decide between these hypotheses for a single
sample:

H x w w N

H x w
0

1

0 0 0 0 1

0 4 0

: [] [] [] ~ (,)

: [] []



 

Set the false-alarm rate to 0.001 and determine the threshold.

T = npwgnthresh(1e-3,1,'real');
threshold = sqrt(db2pow(T))

The threshold is 3.0902. You can check that this yields the desired false-alarm
rate probability and compute the probability of detection.

% check false-alarm probability
Pfa = 0.5*erfc(threshold/sqrt(2))
% compute probability of detection
Pd = 0.5*erfc((threshold-4)/sqrt(2))

6-20

Constant False-Alarm Rate (CFAR) Detectors

Next, assume that the noise power increases by 6.02 dB, doubling the noise
variance. If your detector does not adapt to this increase in variance by
determining a new threshold, your false-alarm rate increases significantly.

Pfa = 0.5*erfc(threshold/2)

The following figure demonstrates the effect of increasing the noise variance
on the false-alarm probability for a fixed threshold.

noisevar = 1:0.1:10;
Noisepower = 10*log10(noisevar);
Pfa = 0.5*erfc(threshold./sqrt(2*noisevar));
semilogy(Noisepower,Pfa./1e-3);
grid on; title('Increase in P_{FA} due to Noise Variance');
ylabel('Increase in P_{FA} (Orders of Magnitude)');
xlabel('Noise Power Increase (dB)');

Cell-Averaging CFAR Detector
The cell-averaging CFAR detector estimates the noise variance for the range
cell of interest, or cell under test, by analyzing data from neighboring range
cells designated as training cells. The noise characteristics in the training
cells are assumed to be identical to the noise characteristics in the cell under
test (CUT).

6-21

6 Detection

This assumption is key in justifying the use of the training cells to estimate
the noise variance in the CUT. Additionally, the cell-averaging CFAR detector
assumes that the training cells do not contain any signals from targets. Thus,
the data in the training cells are assumed to consist of noise only.

To make these assumptions realistic:

• It is preferable to have some buffer, or guard cells, between the CUT and
the training cells. The buffer provided by the guard cells guards against
signal leaking into the training cells and adversely affecting the estimation
of the noise variance.

• The training cells should not represent range cells too distant in range
from the CUT, as the following figure illustrates.

The optimum estimator for the noise variance depends on distributional
assumptions and the type of detector. Assume the following:

1 You are using a square-law detector.

2 You have a Gaussian, complex-valued, random variable (RV) with
independent real and imaginary parts.

3 The real and imaginary parts each have mean zero and variance equal
to σ2/2.

6-22

Constant False-Alarm Rate (CFAR) Detectors

Note If you denote this RV by Z=U+jV, the squared magnitude |Z|2

follows an exponential distribution with mean σ2.

If the samples in training cells are the squared magnitudes of such complex
Gaussian RVs, you can use the sample mean as an estimator of the noise
variance.

To implement cell-averaging CFAR detection, use phased.CFARDetector.
You can customize characteristics of the detector such as the numbers of
training cells and guard cells, and the probability of false alarm.

Testing CFAR Detector Adaption to Noisy Input Data
This example shows how to create a CFAR detector and test its ability to
adapt to the statistics of input data. The test uses noise-only trials. By using
the default square-law detector, you can determine how close the empirical
false-alarm rate is to the desired false-alarm probability.

Create a CFAR detector object with two guard cells, 20 training cells, and a
false-alarm probability of 0.001. By default, this object assumes a square-law
detector with no pulse integration.

hdetector = phased.CFARDetector('NumGuardCells',2,...
'NumTrainingCells',20,'ProbabilityFalseAlarm',1e-3);

There are 10 training cells and 1 guard cell on each side of the cell under
test (CUT). Set the CUT index to 12.

CUTidx = 12;

Seed the random number generator for a reproducible set of input data.

seedval = RandStream('mt19937ar','Seed',1000);

Set the noise variance to 0.25. This value corresponds to an approximate –6
dB SNR. Generate a 23-by-10000 matrix of complex-valued, white Gaussian
RVs with the specified variance. Each row of the matrix represents 10,000
Monte Carlo trials for a single cell.

6-23

6 Detection

Ntrials = 1e4;
variance = 0.25;
Ncells = 23;
inputdata = sqrt(variance/2)*(randn(seedval,Ncells,Ntrials)+...

1j*randn(seedval,Ncells,Ntrials));

Because the example implements a square-law detector, take the squared
magnitudes of the elements in the data matrix.

Z = abs(inputdata).^2;

Provide the output of the square-law operator and the index of the cell under
test to CFAR detector’s step method.

Z_detect = step(hdetector,Z,CUTidx);

The output is a logical vector Z_detect with 10,000 elements. Sum the
elements in Z_detect and divide by the total number of trials to obtain the
empirical false-alarm rate.

Pfa = sum(Z_detect)/Ntrials

The empirical false-alarm rate is 0.0013, which corresponds closely to the
desired false-alarm rate of 0.001.

6-24

7

Environment and Target
Models

• “Free Space Path Loss” on page 7-2

• “Radar Target” on page 7-6

• “Clutter Modeling” on page 7-10

• “Barrage Jammer” on page 7-14

7 Environment and Target Models

Free Space Path Loss
Propagation environments have significant effects on the amplitude, phase,
and shape of propagating space-time wavefields. If you are simulating a
system that propagates narrowband signals through free space, you can use
the phased.FreeSpace object to model the range-dependent time delay, phase
shift, and gain effects.

The free space path loss is:

L
R


()4 2

2



R represents the one-way distance between the source and the array in
meters, and λ is the signal wavelength.

You can use fspl to determine the free space path loss in dB for a given
distance and wavelength.

Determine Free Space Path Loss in Decibels

Assume a transmitter is located at [1000; 250; 10] in the global coordinate
system. Assume a target located at [3000; 750; 20]. The transmitter
operates at 1 GHz. Determine the free space path loss in decibels for a
narrowband signal propagating to and from the target.

[tgtrng,~] = rangeangle([3000; 750; 20],[1000; 250; 10]);
% Multiply range by two for two-way propagation
tgtrng = 2*tgtrng;
% Determine the wavelength for 1 GHz
lambda = physconst('LightSpeed')/1e9;
L = fspl(tgtrng,lambda)

The free space path loss in decibels is approximately 105 dB. You can express
this value as:

Loss = pow2db((4*pi*tgtrng/lambda)^2)

which is a direct implementation of the equation for free space path loss.

7-2

Free Space Path Loss

In addition to modeling the path loss in decibels, the phased.FreeSpace object
accounts for the range-dependent delay in the signal. The time-dependent
delay is the ratio of the distance to the propagation speed of the waveform.
The phased.FreeSpace object has the following modifiable properties:

• PropagationSpeed— The propagation speed of the wave.

• OperatingFrequency— The system operating frequency.

• TwoWayPropagation— Perform two-way propagation. To model two-way
propagation, set this property value to true.

• SampleRate — The sampling rate in hertz.

Propagate a Linear FM Pulse Waveform to and from a Target

Construct a linear FM pulse waveform 50 ms in duration with a bandwidth of
100 kHz. Model the range-dependent time delay and amplitude loss incurred
during two-way propagation. The pulse propagates between the transmitter
located at [1000; 250; 10] and a target location of [3000; 750; 20].

hwav = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',5e-5,'OutputFormat','Pulses',...
'NumPulses',1,'SampleRate',1e6,'PRF',1e4);

wf = step(hwav);
hpath = phased.FreeSpace('SampleRate',1e6,...

'TwoWayPropagation',true,'OperatingFrequency',1e9);
y = step(hpath,wf,[1000; 250; 10],[3000; 750; 20]);

Plot the magnitude of the transmitted and received pulse to show the
amplitude loss and time delay. Scale the time axis in microseconds.

t = unigrid(0,1/hwav.SampleRate,1/hwav.PRF,'[)');
subplot(2,1,1)
plot(t.*1e6,abs(wf)); title('Magnitude of Transmitted Pulse');
xlabel('Microseconds'); ylabel('Magnitude');
subplot(2,1,2);
plot(t.*1e6,abs(y)); title('Magnitude of Received Pulse');
xlabel('Microseconds'); ylabel('Magnitude');

7-3

7 Environment and Target Models

The delay in the received pulse is approximately 14 μs, which is exactly what
you expect for a distance of 4.123 km at the speed of light.

Modeling One-Way and Two-Way Propagation

The TwoWayPropagation property of the phased.FreeSpace object enables
you to use the step method for one- or two-way propagation. The following
example demonstrates how to use this property for a single linear FM pulse
propagated to and from a target. The sensor is a single isotropic radiating
antenna operating at 1 GHz located at [1000; 250; 10]. The target is
located at [3000; 750; 20] and has a nonfluctuating RCS of 1 square meter.

The following code constructs the required objects and calculates the range
and angle from the antenna to the target.

hwav = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',5e-5,'OutputFormat','Pulses',...
'NumPulses',1,'SampleRate',1e6);

hant = phased.IsotropicAntennaElement(...
'FrequencyRange',[500e6 1.5e9]);

htx = phased.Transmitter('PeakPower',1e3,'Gain',20);
hrad = phased.Radiator('Sensor',hant,'OperatingFrequency',1e9);
hpath = phased.FreeSpace('SampleRate',1e6,...

'TwoWayPropagation',true,'OperatingFrequency',1e9);

7-4

Free Space Path Loss

htgt = phased.RadarTarget('MeanRCS',1,'Model','Nonfluctuating');
hcol = phased.Collector('Sensor',hant,'OperatingFrequency',1e9);
sensorpos = [3000; 750; 20];
tgtpos = [1000; 250; 10];
[tgtrng,tgtang] = rangeangle(sensorpos,tgtpos);

Because the TwoWayPropagation property is set to true, you call the step
method for the phased.FreeSpace object only once. The following code calls
the step after the pulse is radiated from the antenna and before the pulse
is reflected from the target.

pulse = step(hwav); % Generate pulse
pulse = step(htx,pulse); % Transmit pulse
pulse = step(hrad,pulse,tgtang); % Radiate pulse
% Propagate pulse to and from target
pulse = step(hpath,pulse,sensorpos,tgtpos);
pulse = step(htgt,pulse); % Reflect pulse
sig = step(hcol,pulse,tgtang); % Collect pulse

If you prefer to break up the two-way propagation into two separate calls to
the step method, you can do so by setting the TwoWayPropagation property
to false.

hpath = phased.FreeSpace('SampleRate',1e9,...
'TwoWayPropagation',false,'OperatingFrequency',1e6);

pulse = step(hwav); % Generate pulse
pulse = step(htx,pulse); % Transmit pulse
pulse = step(hrad,pulse,tgtang); % Radiate pulse
% Propagate pulse from the antenna to the target
pulse = step(hpath,pulse,sensorpos,tgtpos);
pulse = step(htgt,pulse); % Reflect pulse
% Propagate pulse from the target to the antenna
pulse = step(hpath,pulse,tgtpos,sensorpos);
sig = step(hcol,pulse,tgtang); % Collect pulse

7-5

7 Environment and Target Models

Radar Target
The phased.RadarTarget object models a reflected signal from a target with
nonfluctuating or fluctuating radar cross section (RCS). This object has the
following modifiable properties:

• MeanRCSSource— Source of the target’s mean radar cross section

• MeanRCS — Target’s mean RCS

• Model — Statistical model for the target’s RCS

• PropagationSpeed — Signal propagation speed

• OperatingFrequency — Operating frequency

• SeedSource — Source of the seed for the random number generator to
generate the target’s random RCS values

• Seed — Seed for the random number generator

Create a radar target with a nonfluctuating RCS of 1 square meter and an
operating frequency of 300 MHz. Specify a wave propagation speed equal
to the speed of light.

hr = phased.RadarTarget('Model','nonfluctuating','MeanRCS',1,...
'PropagationSpeed',physconst('lightspeed'),...
'OperatingFrequency',3e8);

The waveform incident on the target is scaled by the factor:

G 
4

2



Here, σ represents the target mean RCS, and λ is the wavelength of the
operating frequency. Each element of the signal incident on the target is
scaled by the preceding factor.

Create a target with a nonfluctuating RCS of 1 square meter. Set the
operating frequency to 1 GHz. Set the signal incident on the target to be a
vector of ones to demonstrate the gain factor.

hr = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',1e9);
x = ones(10,1);

7-6

Radar Target

y = step(hr,x);

The output vector y is equal to 11.8245*ones(10,1). The amplitude scaling
factor equals:

lambda = hr.PropagationSpeed/hr.OperatingFrequency;
G = sqrt(4*pi*1/lambda^2)

The previous examples used nonfluctuating values for the target’s RCS. This
model is not valid in many scenarios. There are several cases where the RCS
exhibits relatively small or large magnitude fluctuations. These fluctuations
can occur rapidly on pulse-to-pulse, or more slowly, on scan-to-scan time
scales:

• Several small randomly distributed reflectors with no dominant
reflector — This target, at close range or when the radar uses
pulse-to-pulse frequency agility, can exhibit large magnitude rapid
(pulse-to-pulse) fluctuations in the RCS. That same complex reflector
at long range with no frequency agility can exhibit large magnitude
fluctuations in the RCS over a longer time scale (scan-to-scan).

• Dominant reflector along with several small reflectors — The
reflectors in this target can exhibit small magnitude fluctuations on
pulse-to-pulse or scan-to-scan time scales, subject to:

- How rapidly the aspect changes

- Whether the radar uses frequency agility

To account for significant fluctuations in the RCS, you need to use statistical
models. The four Swerling models, described in the following table, are widely
used to cover these kinds of fluctuating-RCS cases.

7-7

7 Environment and Target Models

Swerling Case Number Description

I Scan-to-scan decorrelation.
Rayleigh/exponential PDF — A
number of randomly distributed
scatterers with no dominant
scatterer.

II Pulse-to-pulse decorrelation.
Rayleigh/exponential PDF — A
number of randomly distributed
scatterers with no dominant
scatterer.

III Scan-to-scan decorrelation —
Chi-square PDF with 4 degrees of
freedom. A number of scatterers
with one scatterer dominant.

IV Pulse-to-pulse decorrelation —
Chi-square PDF with 4 degrees of
freedom. A number of scatterers
with one scatterer dominant.

You can simulate a Swerling target model by setting the Model property. Use
the step method and set the UPDATERCS input argument to true or false.
Setting UPDATERCS to true updates the RCS value according to the specified
probability model each time you call step. If you set UPDATERCS to false, the
previous RCS value is used.

Model Pulse Reflection from a Nonfluctuating Target

The following example creates and transmits a linear FM waveform with a
1 GHz carrier frequency. The waveform is transmitted and collected by an
isotropic antenna with a back-baffled response. The waveform propagates to
and from a target with a nonfluctuating RCS of 1 square meter. The target
is located approximately 1414 meters from the antenna at an angle of 45
degrees azimuth and 0 degrees elevation.

% Create objects and assign property values
% Isotropic antenna element
hant = phased.IsotropicAntennaElement('BackBaffled',true);

7-8

Radar Target

% Location of the antenna
harraypos = phased.Platform('InitialPosition',[0;0;0]);
% Location of the radar target
hrfpos = phased.Platform('InitialPosition',[1000; 1000; 0]);
% Linear FM waveform
hwav = phased.LinearFMWaveform('PulseWidth',100e-6);
% Transmitter
htx = phased.Transmitter('PeakPower',1e3,'Gain',40);
% Waveform radiator
hrad = phased.Radiator('OperatingFrequency',1e9, ...

'Sensor',hant);
% Propagation environment to and from the RadarTarget
hspace = phased.FreeSpace('OperatingFrequency',1e9,...

'TwoWayPropagation',true);
% Radar target
hr = phased.RadarTarget('MeanRCS',1,'OperatingFrequency',1e9);
% Collector
hc = phased.Collector('OperatingFrequency',1e9,...

'Sensor',hant);

% Implement system
wf = step(hwav); % generate waveform
txwf = step(htx,wf); % transmit waveform
wfrad = step(hrad,txwf,[0 0]'); % radiate waveform
% propagate waveform to and from the RadarTarget
wfprop = step(hspace,wfrad,harraypos.InitialPosition,...

hrfpos.InitialPosition);
wfreflect = step(hr,wfprop); % reflect waveform
wfcol = step(hc,wfreflect,[45 0]'); % collect waveform

7-9

7 Environment and Target Models

Clutter Modeling

In this section...

“Surface Clutter Overview” on page 7-10

“Approaches for Clutter Simulation or Analysis” on page 7-10

“Considerations for Setting Up a Constant Gamma Clutter Simulation”
on page 7-11

“Related Examples” on page 7-12

Surface Clutter Overview
Surface clutter refers to reflections of a radar signal from land, sea, or the
land-sea interface. When trying to detect or track targets moving on or above
the surface, you must be able to distinguish between clutter and the targets
of interest. For example, a ground moving target indicator (GMTI) radar
application should detect targets on the ground while accounting for radar
reflections from trees or houses.

If you are simulating a radar system, you might want to incorporate surface
clutter into the simulation to ensure the system can overcome the effects of
surface clutter. If you are analyzing the statistical performance of a radar
system, you might want to incorporate clutter return distributions into the
analysis.

Approaches for Clutter Simulation or Analysis
Phased Array System Toolbox software offers these tools to help you
incorporate surface clutter into your simulation or analysis:

• phased.ConstantGammaClutter, a System object that simulates clutter
returns using the constant gamma model

• Utility functions to help you implement your own clutter models:

- billingsleyicm

- depressionang

- effearthradius

7-10

Clutter Modeling

- grazingang

- horizonrange

- surfclutterrcs

- surfacegamma

Considerations for Setting Up a Constant Gamma
Clutter Simulation
When you use phased.ConstantGammaClutter, you must configure the object
for the situation you are simulating, and confirm that the assumptions the
software makes are valid for your system.

Physical Configuration Properties
The ConstantGammaClutter object has properties that correspond to physical
aspects of the situation you are modeling. These properties include:

• Propagation speed, sample rate, and pulse repetition frequency of the signal

• Operating frequency of the system

• Altitude, speed, and direction of the radar platform

• Depression angle of the broadside of the radar antenna array

Clutter-Related Properties
The object has properties that correspond to the clutter characteristics,
location, and modeling fidelity. These properties include:

• Gamma parameter that depends on the terrain type and system’s operating
frequency.

• Azimuth coverage and maximum range for the clutter simulation.

• Azimuth span of each clutter patch. The software internally divides the
clutter ring into a series of adjacent, nonoverlapping clutter patches.

• Clutter coherence time. This value indicates how frequently the software
changes the set of random numbers in the clutter simulation.

In the simulation, you can use identical random numbers over a time
interval or uncorrelated random numbers. Simulation behavior slightly

7-11

7 Environment and Target Models

differs from reality, where a moving platform produces clutter returns that
are correlated with each other over small time intervals.

Working with Samples or Pulses
The ConstantGammaClutter object has properties that let you obtain results
in a convenient format. Using the OutputFormat property, you can choose to
have the step method produce a signal that represents:

• A fixed number of pulses. You indicate the number of pulses using the
NumPulses property of the object.

• A fixed number of samples. You indicate the number of samples using
the NumSamples property of the object. Typically, you use the number of
samples in one pulse. In staggered PRF applications, you might find this
option more convenient because the step output always has the same
matrix size.

Assumptions
The clutter simulation that ConstantGammaClutter provides makes these
assumptions:

• The radar system is monostatic.

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence time
indicates how frequently the software changes the set of random numbers
in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be approximated
by a phase shift. Similarly, the Doppler shift can be approximated by a
phase shift.

• The radar system maintains a constant height during simulation.

• The radar system maintains a constant speed during simulation.

Related Examples

• Ground Clutter Mitigation with Moving Target Indication (MTI) Radar

7-12

Clutter Modeling

• Introduction to Space-Time Adaptive Processing

• “Example: DPCA Pulse Canceller for Clutter Rejection” on page 5-9

• “Example: Adaptive DPCA Pulse Canceller” on page 5-14

• “Example: Sample Matrix Inversion (SMI) Beamformer” on page 5-21

7-13

7 Environment and Target Models

Barrage Jammer
The phased.BarrageJammer object models a broadband jammer. The output
of phased.BarrageJammer is a complex white Gaussian noise sequence. The
modifiable properties of the barrage jammer are:

• ERP — Effective radiated power in watts

• SamplesPerFrameSource— Source of number of samples per frame

• SamplesPerFrame — Number of samples per frame

• SeedSource— Source of seed for random number generator

• Seed — Seed for random number generator

The real and imaginary parts of the complex white Gaussian noise sequence
each have variance equal to 1/2 the effective radiated power in watts. Denote
the effective radiated power in watts by P. The barrage jammer output is:

w n x n j y nP P[] [] [] 
2 2

In this equation, x[n] and y[n] are mutually uncorrelated sequences of
Gaussian random variables with zero mean and unit variance.

Model Real and Imaginary Parts of Barrage Jammer Output

Create a barrage jammer with the default effective radiated power of 5000
W. Generate 500 samples per frame.

hjam = phased.BarrageJammer('ERP',5e3,'SamplesPerFrame',500);
y = step(hjam);
subplot(2,1,1)
hist(real(y)); title('Histogram of Real Part');
subplot(2,1,2)
hist(imag(y)); title('Histogram of Imaginary Part');
xlabel('Watts');

7-14

Barrage Jammer

Model Effect of Barrage Jammer on Target Echo

This example demonstrates how to simulate the effect of a barrage jammer
on a target echo.

First, create the required objects. You need an array, a transmitter, a
radiator, a target, a jammer, a collector, and a receiver. Additionally, you
need to define two propagation paths: one from the array to the target and
back, and the other path from the jammer to the array.

hula = phased.ULA(4);
Fs = 1e6;
fc = 1e9;
hwav = phased.RectangularWaveform('PulseWidth',100e-6,...

'PRF',1e3,'NumPulses',5,'SampleRate',Fs);
htx = phased.Transmitter('PeakPower',1e4,'Gain',20,...

'InUseOutputPort',true);
hrad = phased.Radiator('Sensor',hula,'OperatingFrequency',fc);
hjammer = phased.BarrageJammer('ERP',1000,...

'SamplesPerFrame',hwav.NumPulses*hwav.SampleRate/hwav.PRF);
htarget = phased.RadarTarget('Model','Nonfluctuating',...

'MeanRCS',1,'OperatingFrequency',fc);
htargetpath = phased.FreeSpace('TwoWayPropagation',true,...

'SampleRate',Fs,'OperatingFrequency', fc);

7-15

7 Environment and Target Models

hjammerpath = phased.FreeSpace('TwoWayPropagation',false,...
'SampleRate',Fs,'OperatingFrequency', fc);

hcollector = phased.Collector('Sensor',hula,...
'OperatingFrequency',fc);

hrc = phased.ReceiverPreamp('EnableInputPort',true);

Assume that the array, target, and jammer are stationary. The array is
located at the global origin, [0;0;0]. The target is located at [1000 ;500;0],
and the jammer is located at [2000;2000;100]. Determine the directions
from the array to the target and jammer.

targetloc = [1000 ; 500; 0];
jammerloc = [2000; 2000; 100];
[~,tgtang] = rangeangle(targetloc);
[~,jamang] = rangeangle(jammerloc);

Finally, transmit the rectangular pulse waveform to the target, reflect it off
the target, and collect the echo at the array. Simultaneously, the jammer
transmits a jamming signal toward the array. The jamming signal and echo
are mixed at the receiver.

% Generate waveform
wf = step(hwav);
% Transmit waveform
[wf,txstatus] = step(htx,wf);
% Radiate pulse toward the target
wf = step(hrad,wf,tgtang);
% Propagate pulse toward the target
wf = step(htargetpath,wf,[0;0;0],targetloc);
% Reflect it off the target
wf = step(htarget,wf);
% Collect the echo
wf = step(hcollector,wf,tgtang);

% Generate the jamming signal
jamsig = step(hjammer);
% Propagate the jamming signal to the array
jamsig = step(hjammerpath,jamsig,jammerloc,[0;0;0]);
% Collect the jamming signal
jamsig = step(hcollector,jamsig,jamang);

7-16

Barrage Jammer

% Receive target echo alone and target echo + jamming signal
pulsewave = step(hrc, wf,~txstatus);
pulsewave_jamsig = step(hrc,wf+jamsig,~txstatus);

Plot the result, and compare it with received waveform with and without
jamming.

subplot(2,1,1);
t = unigrid(0,1/Fs,size(pulsewave,1)*1/Fs,'[)');
plot(t,abs(pulsewave(:,1)));
title('Magnitudes of Pulse Waveform Without Jamming--Element 1')
ylabel('Magnitude');
subplot(2,1,2);
plot(t,abs(pulsewave_jamsig(:,1)));
title('Magnitudes of Pulse Waveform with Jamming--Element 1')
xlabel('Seconds'); ylabel('Magnitude');

7-17

7 Environment and Target Models

7-18

8

Coordinate Systems and
Motion Modeling

• “Rectangular and Spherical Coordinates” on page 8-2

• “Global and Local Coordinate Systems” on page 8-14

• “Motion Modeling in Phased Array Systems” on page 8-21

• “Doppler Shift and Pulse-Doppler Processing” on page 8-26

8 Coordinate Systems and Motion Modeling

Rectangular and Spherical Coordinates

In this section...

“Rectangular Coordinates” on page 8-2

“Spherical Coordinates” on page 8-8

Rectangular Coordinates
Construct a rectangular, or Cartesian, coordinate system for
three-dimensional space by specifying three mutually orthogonal coordinate
axes. The following figure shows one possible specification of the coordinate
axes.

Rectangular coordinates specify a position in space in a given coordinate
system as an ordered 3-tuple of real numbers, (x,y,z), with respect to the
origin (0,0,0). Considerations for choosing the origin are discussed in “Global
and Local Coordinate Systems” on page 8-14.

You can view the 3-tuple as a point in space, or equivalently as a vector in
three-dimensional Euclidean space. Viewed as a vector space, the coordinate
axes are basis vectors and the vector gives the direction to a point in space

8-2

Rectangular and Spherical Coordinates

from the origin. Every vector in space is uniquely determined by a linear
combination of the basis vectors. The most common set of basis vectors for
three-dimensional Euclidean space are the standard unit basis vectors:

{[],[],[]}1 0 0 0 1 0 0 0 1

In the software, you specify both coordinate axes and points as column vectors.

Note In Phased Array System Toolbox software, all coordinate vectors are
column vectors. For convenience, the documentation represents column
vectors in the format [x y z] without transpose notation.

Both the vector notation [x y z] and point notation (x,y,z) are used
interchangeably. The interpretation of the column vector as a vector or point
depends on the context. If the column vector is specifying the axes of a
coordinate system or direction, it is a vector. If the column vector is specifying
coordinates, it is a point.

Any three linearly independent vectors define a basis for three-dimensional
space. However, the software assumes that the basis vectors you use are
orthogonal.

The standard distance measure in space is the l2 norm, or Euclidean norm.
The Euclidean norm of a vector [x y z] is defined by:

x y z2 2 2+ +

The Euclidean norm gives the length of the vector measured from the origin
as the hypotenuse of a right triangle. The distance between two vectors [x0
y0 z0] and [x1 y1 z1] is:

() () ()x x y y z z0 1
2

0 1
2

0 1
2− + − + −

Orienting the Coordinate Axes
Given an orthonormal set of basis vectors representing the coordinate axes,
there are a number of ways to orient the axes. The following figure illustrates

8-3

8 Coordinate Systems and Motion Modeling

one such orientation called a right-handed coordinate system. The arrows on
the coordinate axes indicate the positive directions.

If you take your right hand and point it along the positive x-axis with your
palm facing the positive y-axis and extend your thumb, your thumb indicates
the positive direction of the z-axis.

The direction that an antenna is facing when transmitting and receiving a
signal is referred to as the boresight, or look direction. The convention in
this software for specifying coordinate axes designates the positive x-axis as
boresight direction. The following figure shows a right-handed coordinate
system with the positive x-axis oriented along the sensor look direction.

8-4

Rectangular and Spherical Coordinates

x

y

z

The figure shows the single array element located at the origin. For a number
of array geometries, it is convenient to define the origin as the phase center
of the array. For example, create a default uniform linear array (ULA) and
query the element coordinates:

H = phased.ULA('NumElements',2,'ElementSpacing',0.5)
getElementPosition(H)

The following figure illustrates the default ULA with array elements located
at (0, –0.25, 0) and (0, 0.25, 0).

8-5

8 Coordinate Systems and Motion Modeling

x

z

(0, 0.25, 0)

(0, -0
.25, 0)

y

The next example creates a default uniform rectangular array:

H = phased.URA('Size',[2 2],'ElementSpacing',[0.5 0.5])
ElementLocs = getElementPosition(H)

By default, the uniform rectangular array has four elements. Two elements
are located along both the y- and z-axes.

8-6

Rectangular and Spherical Coordinates

x

y

z

In the two preceding array geometries, the ULA and URA, the look directions
of all the array elements are equal. In the case of the ULA, the y-axis is
aligned with the array element apertures. This alignment is referred to as
the array axis. The array elements have a common look direction, which the
toolbox designates as the x-axis. As you can see, the x-axis is the direction
orthogonal, or normal to the array axis.

In the case of the URA, the array element apertures lie in the yz plane and also
exhibit a common look direction. The x-axis is normal to the plane containing
the array elements. This alignment illustrates the software convention that
the x-axis is the direction normal to the array. In the case of conformal arrays,
the elements do not share a common look direction and the direction normal
to each element is a property of the individual array elements.

The previous examples are revisited in “Local Coordinate System for a
Uniform Linear Array” on page 8-16 and “Local Coordinate System of a
Uniform Rectangular Array” on page 8-17 as examples of local coordinate
systems.

8-7

8 Coordinate Systems and Motion Modeling

Spherical Coordinates
Spherical coordinates describe a vector or point in space with two angles
and a distance. The two angles are the azimuth angle, θ, and the elevation
angle, φ. All angles are specified in degrees. Phased Array System Toolbox
software follows the conventions used in MATLAB regarding the specification
and ordering of spherical coordinates. The order of spherical coordinates in
the software is: (θ,φ,R). The distance, R, is the usual Euclidean norm. The
following figure illustrates the definition of the azimuth and elevation angles
for an arbitrary vector (solid green line).

The azimuth angle is the angle between the positive x-axis and the orthogonal
projection of the vector onto the xy plane. Angles from the positive x-axis
toward the positive y-axis are positive angles and angles from the positive
x-axis toward the negative y-axis are negative angles. The azimuth angle
assumes values in the interval [–180,180] degrees.

The elevation angle is the angle measured from the orthogonal projection
of the vector in the xy plane toward the vector. Angles from the xy plane
toward the positive z-axis are positive. Angles from the xy plane toward the
negative z-axis are negative. The elevation angle assumes a value in the
interval [–90,90] degrees.

8-8

Rectangular and Spherical Coordinates

Note The elevation angle is sometimes defined in the literature as the
angle a vector makes with the positive z-axis. This definition is not used in
MATLAB and in the Phased Array System Toolbox product. The MATLAB
convention measures the elevation angle from the xy plane. For more
information see cart2sph and sph2cart.

The following equations define the relationships between rectangular and
spherical coordinates following the conventions used in Phased Array System
Toolbox software.

To convert from rectangular to spherical coordinates:

R x y z

y x

z x y

= + +

=

= +

−

−

2 2 2

1

1 2 2





tan (/)

tan (/)

To convert from spherical to rectangular coordinates:

x R
y R
z R

=
=
=

cos()cos()
cos()sin()
sin()

 
 


When specifying a target’s location with respect to a phased array, it is
common to refer to its distance and direction from the array. The distance
from the array corresponds to R in spherical coordinates. The direction
corresponds to the azimuth and elevation angles.

The following example illustrates the conversion between rectangular and
spherical coordinates. Both the definitions and the MATLAB functions
cart2sph and sph2cart are used. Because sph2cart and cart2sph input and
output angles specified in radians, use degtorad and radtodeg to convert
angles from degrees to radians.

8-9

8 Coordinate Systems and Motion Modeling

An object is located 1000 meters from a sensor at an azimuth and elevation
angle of 45 degrees. Determine the rectangular coordinates assuming the
sensor is located at the origin.

[X,Y,Z] = sph2cart(degtorad(45),degtorad(45),1000);
% Using the defining relationships
x = 1000*cosd(45)*cosd(45);
y = 1000*cosd(45)*sind(45);
z = 1000*sind(45);
% compare [X,Y,Z] and [x,y,z]
% convert back to spherical using cart2sph
[THETA,PHI,R] = cart2sph(x,y,z);
% angles in radians, convert to degrees
THETA = radtodeg(THETA);
PHI = radtodeg(PHI);
% Using the definitions
theta = radtodeg(atan2(y,x));
phi = radtodeg(atan2(z,sqrt(x^2+y^2)));
r = sqrt(x^2+y^2+z^2);
% compare [THETA,PHI,R] and [theta,phi,r]

Broadside Angle
For the special case of uniform linear arrays (ULA), it is useful to introduce
the concept of the broadside angle. The broadside angle is the angle measured
from array normal direction projected onto the plane determined by the
signal incident direction and the array axis to the signal incident direction.
Broadside angles assume values in the interval [–90,90] degrees. The
following figure illustrates the definition of the broadside angle.

8-10

Rectangular and Spherical Coordinates

The shaded gray area in the figure is the plane determined by the signal
incident direction and the array axis. The broadside angle is positive when
measured toward the positive direction of the array axis. A number of
algorithms for ULAs use the broadside angle instead of the azimuth and
elevation angles. The algorithms do so because the broadside angle more
accurately describes the ability to discern direction of arrival with this
geometry.

Phased Array System Toolbox software provides two utility functions
az2broadside and broadside2az for converting between azimuth and
broadside angles. The following equation determines the broadside angle, β,
from the azimuth and elevation angles, θ and φ:

  = −sin (cos()sin())1

Expressing the broadside angle in terms of the azimuth and elevation angles
reveals a number of important characteristics, including:

• For an elevation angle of zero degrees, the broadside angle is equal to the
azimuth angle.

• Elevation angles equally above and below the xy plane result in identical
broadside angles.

8-11

8 Coordinate Systems and Motion Modeling

The following figure depicts a ULA with elements spaced d meters apart.
The ULA is illuminated by a plane wave emitted from a point source in the
far field. For convenience, the elevation angle is zero degrees. The plane
determined by the signal incident direction and the array axis is the xy plane.
The broadside angle reduces to the azimuth angle.

Source

1

d

d sin(Θ)
Θ

2 3 4 5

Because of the angle of arrival, the array elements are not simultaneously
illuminated by the plane wave. The additional distance the incident wave
travels between array elements is d sin(θ) where d is the distance between
array elements. Therefore, the constant time delay between array elements is:





d

c
sin()

,

where c is the speed of the wave.

For broadside angles of plus or minus 90 degrees, the plane wave is incident
on the array along the array axis and the time delay between sensors reduces
to plus or minus d/c. For a broadside angle of 0 degrees, the plane wave
illuminates all elements of the ULA simultaneously and the time delay
between elements is zero.

8-12

Rectangular and Spherical Coordinates

The following examples demonstrate the use of the utility functions
az2broadside and broadside2az:

A target is located at an azimuth angle of 45 degrees and elevation angle of 60
degrees relative to a ULA. Determine the corresponding broadside angle:

bsang = az2broadside(45,60)
% approximately 21 degrees

Calculate the azimuth corresponding to a broadside angle of 45 degrees and
an elevation of 20 degrees:

az = broadside2az(45,20)
% approximately 49 degrees

8-13

8 Coordinate Systems and Motion Modeling

Global and Local Coordinate Systems

In this section...

“Global Coordinate System” on page 8-14

“Local Coordinate System” on page 8-16

“Converting Between Global and Local Coordinate Systems” on page 8-19

Global Coordinate System
As the word global indicates, the global coordinate system describes the entire
environment that you want to model. Within this global coordinate system,
you can have several phased array systems, both stationary and mobile.
You can also have a number of stationary and mobile targets. Additionally,
there are usually stationary and mobile environmental features that produce
spurious signals you want to ignore as well as stationary and mobile sources
that are actively attempting to interfere with your phased arrays (jammers).

To extract useful information from this environment, you often need to
analyze data from multiple phased arrays over time. Each phased array
senses the environment from its own local perspective. To put the information
from each phased array into a global perspective, you must know the location
of each array in the global coordinate system and the orientation of the array’s
coordinate axes.

In the following figure, the solid dark axes denote the coordinate axes of a
global coordinate system. There are two phased arrays, Array 1, and Array 2.
Each of the phased arrays defines its own coordinate system within the global
system denoted by the dashed lines. A target is indicated by the black circle.

8-14

Global and Local Coordinate Systems

The two phased arrays detect the target and estimate target characteristics
such as range and velocity. To translate information about the target derived
from the two spatially-separated phased arrays, you must know the positions
of the phased arrays and the orientation of their local coordinate axes with
respect to the global coordinate system.

Note In specifying a global coordinate system, you can designate any point
as the origin. The coordinate axes must be orthogonal.

8-15

8 Coordinate Systems and Motion Modeling

Local Coordinate System
Local coordinate systems are defined by phased arrays located within the
global coordinate system. The coordinate axes of a local coordinate system
must be orthogonal, but they do not need to be parallel to the global coordinate
axes. The local origin may be located anywhere in the global coordinate
system and need not be stationary. For example, a vehicle-mounted phased
array has its own local coordinate system, which moves within the global
coordinate system.

You can specify target locations with respect to a local coordinate system
in terms of range and direction of arrival. A target’s range corresponds to
R, the Euclidean distance in spherical coordinates. The direction of arrival
corresponds to θ and φ, the azimuth and elevation angles. Phased Array
System Toolbox software follows the MATLAB convention and lists spherical
coordinates in the order: (θ,φ,R).

The positions of all array elements in this software are in local coordinates.
The following examples illustrate local coordinate systems for uniform linear,
uniform rectangular, and conformal arrays.

Local Coordinate System for a Uniform Linear Array
For a uniform linear array (ULA), the origin of the local coordinate system
is the phase center of the array. The positive x-axis is the direction normal
to the array, and the elements of the array are located along the y-axis. The
y-axis is referred to as the array axis. Define the axis normal to the array as
the span of the vector [1 0 0] and the array axis as the span of the vector [0 1
0]. The z-axis is the span of the vector [0 0 1], which is the cross product of
the two vectors: [1 0 0] and [0 1 0].

Construct a uniform linear array:

H = phased.ULA('NumElements',2,'ElementSpacing',0.5)
getElementPosition(H)

The following figure illustrates the default ULA in a local right-handed
coordinate system:

8-16

Global and Local Coordinate Systems

x

z

(0, 0.25, 0)

(0, -0
.25, 0)

y

The elements are located 0.25 meters from the phase center of the array and
the distance between the two elements is 0.5 meters.

Construct a ULA with eight elements spaced 0.25 meters apart:

H = phased.ULA('NumElements',8,'ElementSpacing',0.25)
% Invoke the getElementPosition method
% to see the local coordinates of the elements
getElementPosition(H)

Local Coordinate System of a Uniform Rectangular Array
In a uniform rectangular array (URA), the origin of the local coordinate
system is the phase center of the array. The x-axis is the direction normal
to the array. In the yz plane, the array elements have even row spacing and
even column spacing.

Construct a URA:

H = phased.URA('Size',[2 2],'ElementSpacing',[0.5 0.5])
ElementLocs = getElementPosition(H)

The following figure illustrates the default URA:

8-17

8 Coordinate Systems and Motion Modeling

x

y

z

Construct a uniform rectangular array with two elements along the y-axis
and three elements along the z-axis.

Ha = phased.URA([2 3])
ElementLocs2by3 = getElementPosition(Ha)

Local Coordinate System of a Conformal Array
In a conformal array, the phase center of the array may be defined at an
arbitrary point. In principle, the orientation of each element in a conformal
array may be different. Therefore, it is convenient to define the array by
giving the element locations with respect to the local coordinate system origin
along with the azimuth and elevation angles defining the boresight directions.

Construct a default conformal array:

H = phased.ConformalArray
% query element position and element normal
H.ElementPosition
H.ElementNormal

The default conformal array consists of a single element located at [0 0 0], the
origin of the local coordinate system. The boresight direction of the single

8-18

Global and Local Coordinate Systems

element is specified by the azimuth and elevation angles (in degrees) in the
ElementNormal property, [0 0].

Construct a conformal array with three elements located at [1 0 0], [0 1 0],
and [0 –1 0] with respect to the origin. Define the normal direction to the first
element as 0 degrees azimuth and elevation. Define the normal direction to
the second and third elements as 45 degrees azimuth and elevation.

H = phased.ConformalArray(...
'ElementPosition',[1 0 0; 0 1 0; 0 -1 0]',...
'ElementNormal',[0 45 45; 0 45 45])

Converting Between Global and Local Coordinate
Systems
In many array processing applications, it is necessary to convert between
global and local coordinates. Two utility functions, global2localcoord and
local2globalcoord, enable you to do this conversion.

Convert Local Spherical Coordinates to Global Rectangular
Coordinates

Assume a stationary target 1000 meters from a URA at an azimuth angle
of 30 degrees and elevation angle of 45 degrees. The phase center of the
URA is located at the rectangular coordinates [1000 500 100] in the global
coordinate system. The local coordinate axes of the URA are parallel to the
global coordinate axes. Determine the position of the target in rectangular
coordinates in the global coordinate system.

In this example, the target’s location is specified in local spherical coordinates.
The target is 1000 meters from the array, which means that R=1000.The
azimuth angle of 30 degrees and elevation angle of 45 degrees give the
direction of the target from the array. The spherical coordinates of the
target in the local coordinate system are (30,45,1000). To convert to global
rectangular coordinates, you must know the position of the array in global
coordinates. The phase center of the array is located at [1000 500 100]. To
convert from local spherical coordinates to global rectangular coordinates,
use the 'sr' option.

gCoord = local2globalcoord([30; 45; 1000],'sr',...
[1000; 500; 100]);

8-19

8 Coordinate Systems and Motion Modeling

Convert Global Rectangular Coordinates to Local Spherical
Coordinates

Assume a stationary target with global rectangular coordinates [5000 3000
50]. The phase center of a URA has global rectangular coordinates [1000 500
10]. The local coordinate axes of the URA are [0 1 0], [1 0 0], and [0 0 –1].
Determine the position of the target in local spherical coordinates.

lCoord = global2localcoord([5000; 3000; 50],'rs',...
[1000; 500; 10],[0 1 0;1 0 0;0 0 -1]);

The output lCoord is in the form (θ,φ,R). The target in local coordinates has
an azimuth of approximately 58 degrees, an elevation of 0.5 degrees, and
a range of 4717.16 meters.

8-20

Motion Modeling in Phased Array Systems

Motion Modeling in Phased Array Systems
A critical component in phased array system applications is the ability to
model motion in space. Such modeling includes the motion of arrays, targets,
and sources of interference. For convenience, you can ignore the distinction
between these objects and collectively model the motion of a platform.

Extended bodies can undergo both translational and rotational motion
in space. Phased Array System Toolbox software supports modeling of
translational motion.

Modeling translational platform motion requires the specification of a position
and velocity vector. Specification of a position vector implies a coordinate
system. In the Phased Array System Toolbox, platform position and velocity
are specified in a “Global Coordinate System” on page 8-14. You can think of
the platform position as the displacement vector from the global origin or as
the coordinates of a point with respect to the global origin.

Let r0 denote the position vector at time 0 and v denote the velocity vector.
The position vector of a platform as a function of time, r(t), is:

r t r vt() = +0

The following figure depicts the vector interpretation of translational motion.

8-21

8 Coordinate Systems and Motion Modeling

r0=r(0)

r(t0)

vt

r(t)=r0+vt

When the platform represents a sensor element or array, it is important
to know the orientation of the element or array local coordinate axes. For
example, the orientation of the local coordinate axes is necessary to extract
angle information from incident waveforms. See “Global and Local Coordinate
Systems” on page 8-14 for a description of global and local coordinate systems
in the software. Finally, for platforms with nonconstant velocity, you must be
able to update the velocity vector over time.

You can model platform position, velocity, and local axes orientation with
the phased.Platform object.

Platform Motion with Constant Velocity

Beginning with a simple example, model the motion of a platform over
ten time steps. To determine the time step, assume that you have a
pulse transmitter with a pulse repetition frequency (PRF) of 1 kilohertz.
Accordingly, the time interval between each pulse is 1 millisecond. Set the
time step equal to pulse repetition interval.

PRF = 1e3;
Tstep = 1/PRF;
Nsteps = 10;

8-22

Motion Modeling in Phased Array Systems

Next, construct a platform object specifying the platform’s initial position and
velocity. Assume that the initial position of the platform is 100 meters (m)
from the origin at (60,80,0). Assume the speed is approximately 30 meters per
second (m/s) with the constant velocity vector given by (15, 25.98, 0).

hplat = phased.Platform('InitialPosition',[60;80;0], ...
'Velocity', [15;25.98;0]);

The orientation of the local coordinate axes of the platform is the value of
the OrientationAxes property. You can view the value of this property
by entering hplat.OrientationAxes at the MATLAB command prompt.
Because the OrientationAxes property is not specified in the construction
of the phased.Platform object, the property is assigned its default value of
[1 0 0;0 1 0;0 0 1].

Use the step method to simulate the translational motion of the platform.

InitialPos = hplat.InitialPosition;
for k = 1:Nsteps

pos = step(hplat,Tstep);
end
FinalPos = pos+hplat.Velocity*Tstep;
DistTravel = norm(FinalPos-InitialPos);

The step method returns the current position of the platform and then
updates the platform position based on the time step and velocity.
Equivalently, the first time you invoke the step method, the output is the
position of the platform at t=0.

Recall that the platform is moving with a constant velocity of approximately
30 m/s. The total time elapsed is 0.01 seconds. Invoking the step method
returns the current position of the platform and then updates that position.
Accordingly, you expect the final position to differ from the initial position by
0.30 meters. Confirm this difference by examining the value of DistTravel.

Platform Motion with Nonconstant Velocity

Most platforms in phased array applications do not move with constant
velocity. If the time interval described by the number of time steps is small
with respect to the platform’s speed, you can often approximate the velocity as
constant. However, there are situations where you must update the platform’s

8-23

8 Coordinate Systems and Motion Modeling

velocity over time. You can do so with phased.Platform because the Velocity
property is tunable. See “Changing System Object Properties” for details.

In this example, assume you model a target initially at rest. The initial
velocity vector is (0,0,0). Assume the time step is 1 millisecond. After 500
milliseconds, the platform begins to move with a speed of approximately
10 m/s. The velocity vector is (7.07,7.07,0). The platform continues at this
velocity for an additional 500 milliseconds.

Tstep = 1e-3;
Nsteps = 1/Tstep;
hplat = phased.Platform('InitialPosition',[100;100;0]);
for k = 1:Nsteps/2

[pos,vel] = step(hplat,Tstep);
end
hplat.Velocity = [7.07; 7.07; 0];
for k=Nsteps/2+1:Nsteps

[pos,vel] = step(hplat,Tstep);
end

Track Range and Angle Changes Between Platforms

This example uses the phased.Platform object to model the changes in range
between a stationary radar and a moving target. The radar is located at
(1000,1000,0) and has a velocity of (0,0,0). The target has an initial position of
(5000,8000,0) and moves with a constant velocity of (–30,–45,0). The pulse
repetition frequency (PRF) is 1 kHz. Assume that the radar emits ten pulses.

The example uses phased.Platform to model the motion of the target and
radar. The global2localcoord function translates the target’s rectangular
coordinates in the global coordinate system to spherical coordinates in the
local coordinate system of the radar.

PRF = 1e3;
Tstep = 1/PRF;
hradar = phased.Platform('InitialPosition',[1000;1000;0]);
htgt = phased.Platform('InitialPosition',[5000;8000;0],...

'Velocity',[-30;-45;0]);
% Calculate initial target range and angle
[InitRng, InitAng] = rangeangle(htgt.InitialPosition,...

hradar.InitialPosition);

8-24

Motion Modeling in Phased Array Systems

% Calculate relative radial speed
v = radialspeed(htgt.InitialPosition,htgt.Velocity,...

hradar.InitialPosition);
% Simulate target motion
Npulses = 10; % Number of pulses
for num = 1:Npulses

tgtpos = step(htgt,Tstep);
end
tgtpos = tgtpos+htgt.Velocity*Tstep;
% Calculate final target range and angle
[FinalRng,FinalAng] = rangeangle(tgtpos,...

hradar.InitialPosition);
DeltaRng = FinalRng-InitRng;

The constant velocity of the target is approximately 54 m/s. The total time
elapsed is 0.01 seconds. The range between the target and the radar should
decrease by approximately 54 centimeters. Compare the initial range of the
target, InitRng, to the final range, FinalRng, to confirm that this decrease
occurs.

See the Introduction to Space-time Adaptive Processing demo for a detailed
example of using phased.Platform to model the motion of a radar, target,
and jammer.

8-25

8 Coordinate Systems and Motion Modeling

Doppler Shift and Pulse-Doppler Processing
Relative motion between a signal source and a receiver produces shifts in the
frequency of the received waveform. Measuring this Doppler shift provides an
estimate of the relative radial velocity of a moving target.

For a narowband signal propagating at the speed of light, the one-way
Doppler shift in hertz is:

f
v

 


where v is the relative radial speed of the target with respect to the
transmitter. For a target approaching the receiver, the Doppler shift is
positive. For a target receding from the transmitter, the Doppler shift is
negative.

You can use speed2dop to convert the relative radial speed to the Doppler
shift in hertz.

Converting Speed to Doppler Shift

Assume a target approaching a stationary receiver with a radial speed of 23
meters per second. The target is reflecting a narrowband electromagnetic
wave with a frequency of 1 GHz. Estimate the one-way Doppler shift.

freq = 1e9;
lambda = physconst('lightspeed')/freq;
DopplerShift = speed2dop(23,lambda)

The one-way Doppler shift is approximately 76.72 Hz. The fact that the target
is approaching the receiver results in a positive Doppler shift.

You can use dop2speed to determine the radial speed of a target relative to a
receiver based on the observed Doppler shift.

Converting Doppler Shift to Speed

Assume you observe a Doppler shift of 400 Hz for a waveform with a frequency
of 9 GHz. Determine the radial velocity of the target.

8-26

Doppler Shift and Pulse-Doppler Processing

freq = 9e9;
lambda = physconst('lightspeed')/freq;
speed = dop2speed(400,lambda)

The target speed is approximately 13.32 m/sec.

Pulse Doppler Processing of Slow-Time Data

A common technique for estimating the radial velocity of a moving target is
pulse Doppler processing. In pulse Doppler processing, you take the discrete
Fourier transform (DFT) of the slow-time data from a range bin containing a
target. If the pulse repetition frequency is sufficiently high with respect to the
speed of the target, the target is located in the same range bin for a number
of pulses. Accordingly, the slow-time data corresponding to that range bin
contain information about the Doppler shift induced by the moving target,
which you can use to estimate the target’s radial velocity.

The slow-time data are sampled at the pulse repetition frequency (PRF)
and therefore the DFT of the slow-time data for a given range bin yields an
estimate of the Doppler spectrum from [-PRF/2, PRF/2] Hz. Because the
slow-time data are complex-valued, the DFT magnitudes are not necessarily
an even function of the Doppler frequency. This removes the ambiguity
between a Doppler shift corresponding to an approaching (positive Doppler
shift), or receding (negative Doppler shift) target. The resolution in the
Doppler domain is PRF/N where N is the number of slow-time samples. You
can pad the spectral estimate of the slow-time data with zeros to interpolate
the DFT frequency grid and improve peak detection, but this does not improve
the Doppler resolution.

The typical workflow in pulse Doppler processing involves:

• Detecting a target in the range dimension (fast-time samples). This gives
the range bin to analyze in the slow-time dimension.

• Computing the DFT of the slow-time samples corresponding to the specified
range bin. Identify significant peaks in the magnitude spectrum and
convert the corresponding Doppler frequencies to speeds.

To demonstrate pulse Doppler processing with the Phased Array System
Toolbox software, assume that you have a stationary monostatic radar located
at the global origin, [0;0;0]. The radar consists of a single isotropic antenna

8-27

8 Coordinate Systems and Motion Modeling

element. There is a target with a non-fluctuating radar cross section (RCS)
of 1 square meter located initially at [1000; 1000; 0] and moving with a
constant velocity of [-100; -100; 0]. The antenna operates at a frequency
of 1 GHz and illuminates the target with 10 rectangular pulses at a PRF of
10 kHz.

Define the System objects needed for this example and set their properties.
Seed the random number generator for the phased.ReceiverPreamp object to
produce repeatable results.

hwav = phased.RectangularWaveform('SampleRate',5e6,...
'PulseWidth',6e-7,'OutputFormat','Pulses',...
'NumPulses',1,'PRF',1e4);

htgt = phased.RadarTarget('Model','Nonfluctuating',...
'MeanRCS',1,'OperatingFrequency',1e9);

htgtloc = phased.Platform('InitialPosition',[1000; 1000; 0],...
'Velocity',[-100; -100; 0]);

hant = phased.IsotropicAntennaElement(...
'FrequencyRange',[5e8 5e9]);

htrans = phased.Transmitter('PeakPower',5e3,'Gain',20,...
'InUseOutputPort',true);
htransloc = phased.Platform('InitialPosition',[0;0;0],...

'Velocity',[0;0;0]);
hrad = phased.Radiator('OperatingFrequency',1e9,'Sensor',hant);
hcol = phased.Collector('OperatingFrequency',1e9,'Sensor',hant);
hspace = phased.FreeSpace('SampleRate',hwav.SampleRate,...

'OperatingFrequency',1e9,'TwoWayPropagation',false);
hrx = phased.ReceiverPreamp('Gain',0,'LossFactor',0,...

'SampleRate',5e6,'NoiseBandwidth',5e6/2,'NoiseFigure',5,...
'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

The following loop transmits ten successive rectangular pulses toward the
target, reflects the pulses off the target, collects the reflected pulses at the
receiver, and updates the target’s position with the specified constant velocity.

NumPulses = 10;
sig = step(hwav); % get waveform
transpos = htransloc.InitialPosition; % get transmitter position
rxsig = zeros(length(sig),NumPulses);
% transmit and receive ten pulses
for n = 1:NumPulses

8-28

Doppler Shift and Pulse-Doppler Processing

% update target position
[tgtpos,tgtang] = step(htgtloc,1/hwav.PRF);
[tgtrng,tgtang] = rangeangle(tgtpos,transpos);
tpos(n) = tgtrng;
[txsig,txstatus] = step(htrans,sig); % transmit waveform
txsig = step(hrad,txsig,...

tgtang); % radiate waveform toward target
txsig = step(hspace,txsig,transpos,...

tgtpos); % propagate waveform to target
txsig = step(htgt,txsig); % reflect the signal
% propagate waveform from the target to the transmiter
txsig = step(hspace,txsig,tgtpos,transpos);
txsig = step(hcol,txsig,tgtang); % collect signal
rxsig(:,n) = step(hrx,txsig,~txstatus); % receive the signal

end

rxsig contains the echo data in a 500-by-10 matrix where the row dimension
contains the fast-time samples and the column dimension contains the
slow-time samples. In other words, each row in the matrix contains the
slow-time samples from a specific range bin.

Construct a linearly-spaced grid corresponding to the range bins from the
fast-time samples. The range bins extend from 0 meters to the maximum
unambiguous range.

prf = hwav.PRF;
fs = hwav.SampleRate;
fasttime = unigrid(0,1/fs,1/prf,'[)');
rangebins = (physconst('lightspeed')*fasttime)/2;

The next step is to detect range bins which contain targets. In this simple
scenario, no matched filtering or time-varying gain compensation is utilized.
See the Doppler Estimation demo for an example using matched filtering and
range-dependent gain compensation to improve the SNR.

In this example, set the false-alarm probability to 1e-9. Use noncoherent
integration of the ten rectangular pulses and determine the corresponding
threshold for detection in white Gaussian noise. Because this scenario
contains only one target, take the largest peak above the threshold. Display
the estimated target range.

8-29

8 Coordinate Systems and Motion Modeling

probfa = 1e-9;
npower = noisepow(hrx.NoiseBandwidth,...

hrx.NoiseFigure,hrx.ReferenceTemperature);
thresh = npwgnthresh(probfa,NumPulses,'noncoherent');
thresh = sqrt(npower * db2pow(thresh));
[pks,range_detect] = findpeaks(pulsint(rxsig,'noncoherent'),...

'MinPeakHeight',thresh,'SortStr','descend');
range_estimate = rangebins(range_detect(1));
fprintf('Estimated range of the target is %4.2f meters.\n',...

range_estimate);

Extract the slow-time samples corresponding to the range bin containing the
detected target. Compute the power spectral density estimate of the slow-time
samples using spectrum.periodogram and find the peak frequency. Convert
the peak Doppler frequency to a speed using dop2speed. A positive Doppler
shift indicates that the target is approaching the transmitter. A negative
Doppler shift indicates that the target is moving away from the transmitter.

ts = rxsig(range_detect(1),:).';
hper = spectrum.periodogram;
% zero pad the data to interpolate the spectral estimate
dopspec = msspectrum(hper,ts,'Fs',prf,'NFFT',256,...

'CenterDC',true);
plot(dopspec);
[Y,I] = max(dopspec.Data);
lambda = physconst('lightspeed')/1e9;
tgtspeed = dop2speed(dopspec.Frequencies(I)/2,lambda);
fprintf('Estimated target speed is %3.1f m/sec.\n',tgtspeed);
if dopspec.Frequencies(I)>0

fprintf('The target is approaching the radar.\n');
else

fprintf('The target is moving away from the radar.\n');
end

8-30

Doppler Shift and Pulse-Doppler Processing

The code produces:

Estimated range of the target is 1439.00 meters.
Estimated target speed is 140.5 m/sec.
The target is approaching the radar.

The true radial speed of the target is detected within the Doppler resolution
and the range of the target is detected within the range resolution of the radar.

See Doppler Estimation for a demo of pulse-Doppler processing with a single
antenna and Scan Radar Using a Uniform Rectangular Array for an example
of pulse-Doppler processing with a planar array.

8-31

	toc
	Phased Arrays
	Antenna and Microphone Elements
	Isotropic Antenna Element
	Design Backbaffled Isotropic Antenna Element and Obtain Element
	Cosine Antenna Element
	Cosine Antenna Element Operating from 1 to 10 GHz
	Custom Antenna Element
	Omnidirectional Microphone
	Backbaffled Omnidirectional Microphone with Frequency Response f
	Custom Microphone Element
	Microphone with Cardioid Response Pattern

	Array Geometries and Analysis
	Uniform Linear Array
	Four-Element ULA with Cardioid Microphone Elements
	Uniform Rectangular Array
	Six-Element URA Receiving Sine Wave Signals
	Conformal Array
	Uniform Circular Array

	Signal Radiation
	Radiate Signal with Uniform Linear Array
	Signal Collection
	Narrowband Collector for Uniform Linear Array
	Narrowband Collector for a Single Antenna Element
	Wideband Signal Collection

	Waveforms, Transmitter, and Receiver
	Rectangular Pulse Waveforms
	Linear Frequency Modulated Pulse Waveforms
	Linear FM Pulse Waveforms
	Comparing Autocorrelation for Rectangular and Linear FM Waveform
	Stepped FM Pulse Waveforms
	Phase-Coded Waveforms
	When to Use Phase-Coded Waveforms
	How to Create Phase-Coded Waveforms
	Basic Radar Using Phase-Coded Waveform

	Waveforms with Staggered PRFs
	When to Use Staggered PRFs
	Linear FM Waveform with Staggered PRF

	Transmitter
	Transmitter Object
	Phase Noise

	Receiver Preamp
	Model Receiver Effects on Sinusoidal Input
	Model Coherent on Receive Behavior
	Radar Equation
	Determine the Required Transmitter Peak Power Using the Radar Eq
	Determine Maximum Detectable Range for a Monostatic Radar
	Estimate Output SNR at the Receiver in a Bistatic Radar

	Beamforming
	Conventional Beamforming
	Narrowband (Phase Shift) Beamformer with a ULA
	Adaptive Beamforming
	LCMV Beamformer
	Wideband Beamforming
	Wideband Conventional Time-Delay Beamforming

	Direction-of-Arrival (DOA) Estimation
	Beamscan DOA Estimation
	Beamscan DOA
	Super-resolution DOA Estimation
	Root MUSIC DOA Estimation

	Space-Time Adaptive Processing (STAP)
	Angle-Doppler Response
	Benefits of Visualizing Angle-Doppler Response
	Angle-Doppler Response of a Stationary Target at a Stationary Ar
	Angle-Doppler Response of a Stationary Target Return at a Moving

	Displaced Phase Center Antenna (DPCA) Pulse Canceller
	When to Use the DPCA Pulse Canceller
	Applicability of DPCA Pulse Canceller

	Example: DPCA Pulse Canceller for Clutter Rejection

	Adaptive Displaced Phase Center Antenna (ADPCA) Pulse Canceller
	When to Use the Adaptive DPCA Pulse Canceller
	Example: Adaptive DPCA Pulse Canceller

	Sample Matrix Inversion (SMI) Beamformer
	When to Use the SMI Beamformer
	Example: Sample Matrix Inversion (SMI) Beamformer

	Detection
	Hypothesis Testing
	Neyman-Pearson Hypothesis Testing
	Likelihood Ratio Tests
	Threshold for Real-Valued Signal in White Gaussian Noise
	Threshold for Complex-Valued Signals in Complex White Gaussian N

	Receiver Operating Characteristic (ROC) Curves
	Matched Filtering
	Matched Filtering of Linear FM Waveform
	Matched Filtering to Improve SNR for Target Detection
	Constant False-Alarm Rate (CFAR) Detectors
	Reasons for Using CFAR Detectors
	Cell-Averaging CFAR Detector
	Testing CFAR Detector Adaption to Noisy Input Data

	Environment and Target Models
	Free Space Path Loss
	Determine Free Space Path Loss in Decibels
	Propagate a Linear FM Pulse Waveform to and from a Target
	Modeling One-Way and Two-Way Propagation
	Radar Target
	Model Pulse Reflection from a Nonfluctuating Target
	Clutter Modeling
	Surface Clutter Overview
	Approaches for Clutter Simulation or Analysis
	Considerations for Setting Up a Constant Gamma Clutter Simulatio
	Physical Configuration Properties
	Clutter-Related Properties
	Working with Samples or Pulses
	Assumptions

	Related Examples

	Barrage Jammer
	Model Real and Imaginary Parts of Barrage Jammer Output
	Model Effect of Barrage Jammer on Target Echo

	Coordinate Systems and Motion Modeling
	Rectangular and Spherical Coordinates
	Rectangular Coordinates
	Orienting the Coordinate Axes

	Spherical Coordinates
	Broadside Angle

	Global and Local Coordinate Systems
	Global Coordinate System
	Local Coordinate System
	Local Coordinate System for a Uniform Linear Array
	Local Coordinate System of a Uniform Rectangular Array
	Local Coordinate System of a Conformal Array

	Converting Between Global and Local Coordinate Systems
	Convert Local Spherical Coordinates to Global Rectangular Coordi
	Convert Global Rectangular Coordinates to Local Spherical Coordi

	Motion Modeling in Phased Array Systems
	Platform Motion with Constant Velocity
	Platform Motion with Nonconstant Velocity
	Track Range and Angle Changes Between Platforms
	Doppler Shift and Pulse-Doppler Processing
	Converting Speed to Doppler Shift
	Converting Doppler Shift to Speed
	Pulse Doppler Processing of Slow-Time Data

